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ARTICLE INFO ABSTRACT
ATfiC’_e history: Background and Objective: Strands of evidence have supported existence of negative attentional bias in
Received 22 January 2018 patients with depression. This study aimed to assess the behavioral and electrophysiological signatures

Revised 27 June 2018

of attentional bias in major depressive disorder (MDD) and explore whether ERP components contain
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valuable information for discriminating between MDD patients and healthy controls (HCs).
Methods: Electroencephalography data were collected from 17 patients with MDD and 17 HCs in a dot-

Keywords: probe task, with emotional-neutral pairs as experimental materials. Fourteen features related to ERP
Major depressive disorder waveform shape were generated. Then, Correlated Feature Selection (CFS), ReliefF and GainRatio (GR)
Attentional bias were applied for feature selection. For discriminating between MDDs and HCs, k-nearest neighbor (KNN),

Event-related potentials
Feature selection
Classification

C4.5, Sequential Minimal Optimization (SMO) and Logistic Regression (LR) were used.
Results: Behaviorally, MDD patients showed significantly shorter reaction time (RT) to valid than invalid
sad trials, with significantly higher bias score for sad-neutral pairs. Analysis of split-half reliability in
RT indices indicated a strong reliability in RT, while coefficients of RT bias scores neared zero. These
behavioral effects were supported by ERP results. MDD patients had higher P300 amplitude with the
probe replacing a sad face than a neutral face, indicating difficult attention disengagement from negative
emotional faces. Meanwhile, data mining analysis based on ERP components suggested that CFS was the
best feature selection algorithm. Especially for the P300 induced by valid sad trials, the classification
accuracy of CFS combination with any classifier was above 85%, and the KNN (k=3) classifier achieved
the highest accuracy (94%).
Conclusions: MDD patients show difficulty in attention disengagement from negative stimuli, reflected by
P300. The CFS over other methods leads to a good overall performance in most cases, especially when
KNN classifier is used for P300 component classification, illustrating that ERP component may be applied
as a tool for auxiliary diagnosis of depression.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Depression is one of the most prevalent psychiatric disorders
[1], with an estimated 300 million affected individuals globally
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viduals with MDD tend to exhibit increased attentional processing
for negative stimuli relative to positive events, which is considered
a core cognitive risk factor for depression [3,4]. Importantly, Clasen
et al. [5] found that attentional bias to negative information is in-
deed associated with the persistence of sad mood in depression.
Moreover, depression may be characterized by difficulties in atten-
tion disengagement from negative thoughts, memories and events
[6,7]. In turn, susceptibility to negative stimuli adversely affects the
ability of patients to respond to daily life needs. Understanding the
detailed time course of attentional bias could help delineate which
stages of affective processing are affected by the negativity bias en-
countered in MDD.

The dot-probe task has been widely used to examine abnor-
mal attentional bias in depressed subjects [8-10]. It is based on
the assumption that individuals tend to respond faster to a probe
stimulus presented to an area in the visual field being attended to.
Faster reactive times (RTs) to targets replacing emotional faces and
slower RTs to probes substituting neutral faces indicate the partic-
ipant’s priority attention to the emotional faces [11]. In a study by
Joormann and Gotlib [12], subjects were instructed to identify the
locations of targets that appeared at the emotionally neutral and
salient sides, respectively, formerly depressed participants showed
positive bias scores for sad faces. In addition, Zhao et al. [10], us-
ing the dot probe task, found that abstinent heroin addicts (AHAs)
have shorter RTs for drug-related stimuli compared with neutral-
related stimuli, confirming attentional bias of AHAs in the drug-
related context. In contrast, other studies using this task via RT
index failed to evidence negative attentional bias [8,9]. The poor
reliability of RT indices associated with attentional bias has also
been demonstrated by recent studies [9,13], which increases the
error risk using the RT index to assess attentional bias in depres-
sion. Besides, behavioral measures can only provide a snapshot of
attention deployment, rather than explicitly reflecting the distribu-
tion of attention over a period of time [14].

1.1. ERP correlates of emotional processing

Electroencephalography provides a direct measure of postsy-
naptic potentials with millisecond temporal resolution, and can be
used to investigate information processing and functional interac-
tions in the human brain [15]. Particularly, the high temporal res-
olution of event-related potentials (ERPs) compared with alterna-
tive brain imaging tools, i.e. functional magnetic resonance imaging
(fMRI), represents a great advantage in examining sequential cog-
nitive processing states involved in a task [10]. For instance, early
visual components approximately 80-250 ms after stimulus onset,
P100 or N170, are particularly associated with perceptual process-
ing, including visual processing of the stimulus and structural en-
coding of faces [16,17]. A study reported that the N170 is not af-
fected by emotional expressions, supporting the notion that struc-
tural encoding and expression analysis are independent processes
[18]. However, another study reported a contrasting finding that an
early automatic encoding of emotional expressions is reflected by
the N170 [19]. The role of the N170 in emotional facial expression
cognition remains debatable. The P100 is thought to provide evi-
dence for covert orienting of visuospatial attention [20]. Mingtian
et al. [20] found that HCs have significantly large P100 amplitude
to valid positive-neutral pairs in the right parietal-occipital region
than invalid positive-neutral pairs in the dot-probe task. Indication
of abnormal neurophysiological processing in depressive individu-
als was found in early perception stages covered by decreased P100
latency over right posterior regions to sad faces compared with
healthy subjects [21]. These findings support the right hemisphere
of the brain is mainly involved in emotional processing. In order to
explore visual processing of stimuli in MDD, the P100 component
in the early stage was the focus of the current research.

Late ERP components, such as P200, N200 and P300, were
thought to reflect higher-order cognitive processes [22,23], espe-
cially the P300 component, providing an indicator of attention dis-
engagement from emotional stimuli [24,25]. The peak latency of
the P300 at approximately 300ms after stimulus onset is high-
est at the centro-parietal sites along the midline [10,21]. Using
the dot-probe task, Leutgeb et al. [25] found that phobias exhibit
higher P300 to valid probes following a spider picture, but not a
neutral image. A larger probe-induced P300 is thought to reflect
the need for greater cognitive resources to get rid of the previ-
ously involved stimulus location, indicating difficult disengagement
from previously involved locations [25]. Importantly, this design is
allowed to assess differences in attentional disengagement across
emotional stimuli in MDDs and HCs.

1.2. Application based on ERP classification

Classification algorithms for identification have been developed
in a variety of applications using ERPs. For example, Sveinsson
et al. [26] proposed a new architecture for classification based on
ERPs by extracting features from both chronic schizophrenic pa-
tients and HCs, with an overall classification accuracy reaching
90%. In [27], a genetic algorithm (GA) with the Fuzzy ARTMAP
(FA) classifier was proposed for the classification of alcoholics and
non-alcoholics using brain rhythms extracted during visual stim-
uli, and the best average classification accuracy reached 95.9%.
A computer-based classification system was designed for segre-
gating depression patients from HCs using the ERP component
P600, which extracts seventeen features related to the waveform
shape. After combination with the optimum support vector ma-
chine (SVM) classifier, classification accuracy reached 94% [28].
However, attention-related ERP components in the dot-probe task
as a tool for auxiliary diagnosis of depression has not been studied.

1.3. Goals of the current study

Therefore, in the current study, a dot-probe task was employed
to explore attentional bias to emotional faces in MDD patients. At
the behavioral level, we predicted that MDDs would have faster
reaction to valid sad stimuli compared with invalid sad stimuli. At
the neurological level, we expected MDD patients would demon-
strate certain abnormal neurophysiological indicators, which might
be manifested as difficult attention disengagement from sad faces
by enhanced P300 amplitude to valid sad trials. Consistent with
previous studies [9,13], we raised concerns about the reliability of
RT indices, and evaluated their split-half reliability. Additionally,
whether ERP components contain valuable information for dis-
criminating between MDD patients and healthy controls was ex-
amined. Classification accuracy was compared for different feature
selection techniques and classifiers, in order to identify the best
selection method and classifier combination for detecting MDD.

2. Methods
2.1. Participants

A total of 19 patients diagnosed with MDD and 20 healthy con-
trols were included in the current study. Three HCs were excluded
due to heavy artifact contamination of EEG data. To ensure match
between MDD patients and HCs in terms of sex, age and educa-
tion level, we removed two patients with MDD. As a result, 17
MDD patients (age, 32.9 £ 10 years; 8 females and 9 males; edu-
cation level 11.5042.9 years) and 17 HCs (age, 29.9 +£9.3 years; 8
females and 9 males; education level 12.55+2.4 years) were fur-
ther assessed. All participants were right-handed, with normal or
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corrected-to-normal visual acuity. Depression diagnosis was per-
formed by psychiatrists using the Mini International Neuropsychi-
atric Interview (MINI) [29], and patients who met the Diagnostic
and Statistical Manual of Mental Disorders criteria (DSM-IV) for
depression were enrolled in this study. Inclusion criteria for de-
pressive patients were: (a) primary education level or above; (b)
Patient Health Questionnaire-9 (PHQ-9) score > 5 points; (c) before
enrollment, no antipsychotics and antidepressants received in the
past two weeks. Exclusion criteria were: (a) past or present ex-
perience of psychotic episodes; (b) depressive disorder caused by
organic mental disorder; (c) current experience of severe and un-
stable physical diseases; (d) abuse of alcohol or psychoactive sub-
stances in the past year; (e) pregnancy or breastfeeding in women;
(f) serious suicidal thoughts; (g) a history of neurological disorders,
including epilepsy, head injury, and loss of consciousness; (h) a
history of electroconvulsive therapy and magnetic stimulation in
the past three months. HC individuals had no brain illness history,
psychiatric disorders or medications. Meanwhile, the PHQ-9 was
used to assess the severity of depressive symptoms in both groups.

Independent t-test was used to assess age, education level, and
PHQ-9 score, respectively, while group difference in gender was
examined by the Chi-squared test. No significant differences be-
tween the two groups were found in age (t(32)=-0.92, p=0.81),
gender (x2(1)=0.75, p=0.50) and education level ({(32)=0.33,
p=0.89). PHQ-9 scores in the MDD group were significantly higher
than those of HC individuals (17.9 4.3 for MDDs; 3 +2.6 for HCs;
t(32)=-12.22, p <0.005).

All participants provided signed informed consent before enrol-
ment in this study, which was approved by the Lanzhou University
Second Hospital’s ethics committee. Each participant received a re-
imbursement of approximately USD $16 for participation after the
experiment.

2.2. Dot-probe task

2.2.1. Emotional face stimuli

Previous studies have demonstrated that people better recog-
nize facial expressions from their own country or race [30]. There-
fore, the face stimuli used in this study were obtained from the na-
tive Chinese Facial Affective Picture System (CFAPS), which can bet-
ter fit emotional inducement for Chinese native subjects [31]. The
face stimulus set comprised photographs of ten males and ten fe-
males displaying two kinds of emotions (happy and sad), as well as
40 neutral faces, yielding a total of 80 expressions. The picture size
was 5.16cm x 5.95cm, and all non-facial features were trimmed
(i.e., no hair or clothing). The MATLAB software was used to equate
mean pixel luminance, contrast, and centro-spatial frequency in all
faces, whose pictures were converted into 8-bit greyscale images.

Each sad or happy face was paired with a neutral face, creating
two emotional blocks: happy-neutral and sad-neutral faces. Thus,
we obtained emotional-face pair stimuli consisting of 20 happy-
neural and 20 sad-neutral faces. Each block had 160 trials for a
total of 480 trials. These face pairs acting as different valences ran-
domly appeared in the left or right side of the screen, with equal
number of occurrences in each block, as did the targets.

2.2.2. Design and implementation of the dot-probe task

Here we applied a dot-probe task to assess differences in be-
havior and neural responses to attentional bias between MDD pa-
tients and HCs. IBM compatible computers and DELL 17-1 with
1024 x 768 pixels resolution and a refresh rate of 75Hz were used
to present this task, which was programmed with the E-Prime ver-
sion 2.0 software (Psychology Software Tools Inc., Pittsburgh PA,
USA). Stimulus presentation was synchronized with the screen re-
fresh rate.

The typical sequence of events is presented in Fig. 1. At the
beginning of each trial, a central-fixation cross was displayed for
300-600ms in the middle of the black screen. The central-fixation
cross subtended a visual angle of 1.6° x 1.61°(1.9cm x 1.9cm) at a
60 cm viewing distance. Followed by the emergence of CFAPS face
pairs (happy-neutral or sad-neutral), a face appeared on the left
and another on the right of the central-fixation cross for 500 ms,
and the distance between the fixation cross and the center of each
face was 5cm. After randomly selected intervals of 100, 150, 200,
250, or 300ms of central-fixation cross, a probe with a radius of
1.5cm appeared in the center of one of the previously presented
faces for 150 ms. The participants were instructed to press keys as
quickly and accurately as possible to determine the probe’ loca-
tion within a specific time of 2000 ms. Pressing the response key
indicated that the response window was terminated; inter-trial in-
terval was 600 ms.

During the whole trial, the participants were required to main-
tain visual fixation on the fixation cross, so as to minimize eye
movement artifacts during EEG recording. Before the real experi-
ment, the subjects were required to complete 10 practice trials. The
experiment took place in a sound attenuated, dark and air condi-
tioned room.

2.3. EEG data acquisition and preprocessing

EEG was recorded at a sampling rate of 250Hz with the
Net Station software (version 4.5.4) on a 128-channel HydroCel
Geodesic Sensor Net. The scalp impedance of each sensor was kept
below 70kS2, and EEG data were re-referenced off-line to the aver-
age of all electrodes.

Signal processing and analysis of EEG data was performed with
the EEGLAB [32] and ERPLAB [33] toolboxes in MATLAB. EEG sig-
nals were filtered by a high-pass filter with a cutoff frequency of
0.3Hz and a low-pass filter with a cutoff frequency of 30Hz. A
small section of EEG data was excluded by view inspection, includ-
ing swallowing and coughing, which resulted in large artifacts. In
addition, independent component analysis (ICA) was computed for
all EEG channels to remove ocular and muscle artifacts [34]. ICs
associated with eye movements and blinking activities were iden-
tified by visual inspection as frontopolar maxima for blinks/vertical
saccades and lateral frontal maxima with different polarities for
horizontal saccades.

2.4. Analysis of ERP components

To assess the ERP components, ICA-corrected EEG data were
segmented for each trial from 100 ms pre-stimulus to 600 ms post-
stimulus, and baseline corrected using 100 ms pre-stimulus data.
Approximately 8% of all trials for each emotional face in valid and
invalid conditions were excluded because of large movement arti-
facts (signal exceeding +100uV). Statistical analysis showed no sig-
nificant difference in the number of trials remaining for each con-
dition (p > 0.05).

This study examined two ERP components associated with at-
tention processing, including cue-evoked P100 and target-evoked
P300. P100 amplitude is determined by averaging the amplitudes
of electrodes near the left and right occipital regions [20]. There-
fore, in the present study, mean P100 amplitude was obtained by
averaging left and right parieto-occipital electrode data (PO7/01
and P0O8/02) between 80-160ms after cue presentation [20,35].
The P300 was defined at the electrodes Cz and Pz with a time
window between 300 and 600 ms after stimulus presentation [21].
Since the cue-evoked response lasted relatively long, the early
components of the target-evoked response were severely distorted
by the cue-evoked response. Therefore, early ERP components
elicited by target stimuli were not considered in this study.
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Fig. 1. A typical trial for the dot probe task.

2.5. Statistical analyses

2.5.1. Behavioral data

Reaction time (RT) was defined as response latency from the
probe onset. To reduce the impact of outliers, RTs more than
1000 ms or less than 100 ms (or incorrect) were eliminated from
the current analysis [12,36]. Behavioral data were analyzed by
repeated-measures ANOVA with group (MDD patients vs. HCs) as
between-subjects factor and two within-subjects factors, including
type (happy vs. sad) and validity (valid, emotional face and probe
appeared on same side vs. invalid, probe appeared in a location
different from the emotional face).

Moreover, another measure of attentional bias is to calculate
bias scores of emotional faces using the following equation [13]:

Attentionalbiasscore (1)
= 1/2[(RpLe — RpRe) + (LpRe — LpLe)],

where R and L are the right and the left sides of the central-
fixation cross respectively, p is the probe, and e is the emotional
face. Thus, RpLe represents average latency when the probe ap-
pears in the right position with the emotional face in the left posi-
tion, for example. Positive bias scores suggest preferential attention
to emotional faces, while negative ones indicate avoidance of emo-
tional faces.

2.5.2. ERP data

To evaluate the characteristics of attentional bias in MDD, ERP
components were compared between MDD patients and HCs. In
particular, the analyses mainly focused on the P100 and P300 com-
ponents at the early and late stage stages, respectively. The mean
amplitude and latency of P100 were submitted to assessment by
repeated-measures ANOVA with group, type and hemisphere (left
vs. right) as factors, while repeated-measures ANOVA was con-
ducted on mean amplitude and latency of P300, with four factors,
including group, type, validity and electrode site (Cz vs. Pz).

2.6. Classification methodology

2.6.1. Feature generation

Scalp topography showed that the main P100 and P300 acti-
vation areas were in the occipital area and centro-parietal sites,
respectively. A total of 14 electrodes from the occipital area and
centro-parietal sites were selected, including PO3, PO4, PO7, PO8,

01, 02, and Oz for the P100 component, and C2, C1, Cz, CPz, P1,
P2 and Pz for the P300 component. For ERP average in each sub-
ject, we extracted the following 14 time domain features for the
P100 (at 80-160ms time interval) and P300 (at 300-600 ms time
interval) components.

(1) Latency (LAT, ts,,.)-—the ERP’s latency time, i.e. the time
where the maximum signal value occurs:

Es o= {E1S(£)=Smax} (2)
(2) Amplitude (AMP, spmax )-—the maximum signal value:
Smax=max{s(t)} (3)

(3) Latency/amplitude ratio (LAR, ts,,., /Smax)-
(4) Absolute amplitude (AAMP, |Smax |)-
(5) Absolute latency/amplitude ratio (ALAR, |ts..,/Smax|)-
(6) Positive area (PAR, Ap)-—the sum of positive signal values
for the P100 component from 80 to 160 ms and for the P300
component from 300 to 600 ms:
160ms

App= ) 05(s(t)+][s(t)]) (4)
t=80ms
600ms

Apz= )" 05(s(t) +[s(t)]) (5)
t=300ms

(7) Negative area (NAR, Ap)-—the sum of negative signal values
for the P100 component from 80 to 160 ms and for the P300
component from 300 to 600 ms:

160ms
A=Y 05(s(t) —Is(®)]) (6)
t=80ms
600ms
Apz= Y 05(s(t) —Is(t)]) (7)
t=300ms
(8) Total area (TAR, Apy):
Apn=Ap + An (8)
(9) Mean of peak-to-peak (PP, PPmean):
PPmean:(Smax - Smin)/z (9)

where smax and s;,;, are maximum and minimum signal values,
respectively:

Smax= max{s(t)}’smin: min{s(t)} (10)
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(10) Mean square:

N

1 2
meanSquare= ;S(t) (11)
(11) Variance:
. 1 —\2
Variance= 15— ; (s(t) —s(D)) (12)

(12) The Hjorth parameter, in the time domain analysis method
[37], defines three time domain parameters, including activ-
ity, mobility and complexity corresponding to the amplitude,
slope and rate of change, which is characteristic of EEG data
in the time domain. The formula for n moments calculations
are as follows:

“+00 ] +oo
nm:f s@ﬂ&vsz 2(t)dt (13)
2
+oo 1t [ds
_ 2 —_ -
mz_[mZUSWﬂMU_I_FT<m>dt (14)
+o00 1 t dZS 2
_ 4 _ hatig
m4_/7:>o w’s(w)dw = T.[—T <dt2> dt (15)

where s(w) represents the density spectral function of en-
ergy, s(t) is the EEG signal of a period of time, and m; repre-
sents the i moment. Then, the Hjorth parameters are derived
as:

Activity = mg (16)
Mobility = /m,/mq (17)
Complexity = \/mg/my — my/my (18)

Activity, mobility and complexity were extracted as features in
the study. So, each participant had 1176 features (14 electrodes x 14
features x 6 stimulus conditions). Six stimulus conditions consisted
of happy-neutral and sad-neutral pairs for the P100 component,
as well as happy-neutral valid, happy-neutral invalid, sad-neutral
valid and sad-neutral invalid trials for the P300 component. All the
features were normalized, i.e. the obtained data were mapped to
the [0, 1] interval. The conversion function was as follows:

S(t)/ = (S(t) - Smin)/(smax - Smin) (]9)

2.6.2. Feature selection

As a preprocessing step of data mining, feature selection is ef-
fective in reducing dimensionality, removing irrelevant data, in-
creasing learning accuracy and improving comprehensibility. In
this study, 34 data samples with 98 dimensional feature vectors
were obtained for each condition of each ERP component. The high
feature dimension affects the efficiency of abnormal detection to
a great extent. Therefore, we chose three feature selection algo-
rithms, including Correlated Feature Selection (CFS) [38], ReliefF
[39], and GainRatio (GR) [40] to reduce the dimension of feature
space.

The Correlation Feature Selection (CFS) algorithm evaluates sub-
sets of features based on the hypothesis that “Good feature subsets
contain features that are highly correlated with the class, yet un-
correlated to each other”. CFS first calculates the correlation matrix
of feature-class and feature-feature from the training data set; the
GreedyStepwise search method was used in this study. According

to evaluation criteria, the impact of each feature on classification
was defined as follows:

kres

Jk+k(k— 1),

where Merits(k) represents an evaluation of S, a subset of features
that contain k features; Ty is the average feature-class correlation;
Ty is the average feature-feature inter-correlation.

The ReliefF algorithm, a well-known distance-based feature
ranking method, was first developed by Robnik-Sikonja and
Kononenko [39]. Its main idea is to rank features in terms of dis-
tance by searching nearest neighbors of samples for each class and
then weighting features in terms of how well they differentiate
samples from different classes. For each target sample, when the
weight is less than a certain threshold, the target feature is re-
moved. As an important machine learning algorithm, ReliefF has
a wide range of applications in high-throughput data feature se-
lection, and classification.

The GainRatio (GR) algorithm is an extension of information
gain, proposed by Quinlan in [40]. It overcomes the shortcomings
of information gain, which bias the selection of attributes with
many different values. The GR uses Splitinfor(S) to normalize in-
formation gain:

i . |Sv Sv
Splitinfor(s) = - Y- 1l +log; <||5||> o)
i=1

Merits(k) = (20)

This value represents the potential information generated by
decomposing the training data set S into v partitions, correspond-
ing to v outcomes of a test on the feature F. The GR is obtained as:

Gain(F)
Splitinfor(S)

In (22), the ratio becomes unstable when Splitinfog(S) ap-
proaches zero. In order to avoid this situation, information gain of
the selected test must be at least as large as the average gain of
all the tests examined. Eventually, feature with the maximum gain
ratio is selected as the split feature.

GainRatio(F, S) = (22)

2.6.3. Classifiers

Because there is no uniform classification for all applications,
testing multiple methods is often useful. Taking into account time,
interpretation, complexity, and flexibility of different classification
methods as well as other research applications [40,41], four famous
and most frequently used classifiers, including k-nearest neighbor
(KNN), C4.5, Sequential Minimal Optimization (SMO) and Logistic
Regression (LR), were adopted to generate classification accuracy
for the datasets with selected features obtained by different fea-
ture selection methods. Weka (Waikato environment for knowl-
edge analysis) was selected as the classification platform; it is
publicly available online at http://www.cs.waikato.ac.nz/ml/weka.
In the k-nearest neighbor method, k was set as 1, 2, 3, 4 and 5,
respectively, to find which k value could achieve the best classifica-
tion performance. For other classifiers, we used default parameter
settings.

We used Leave-One-Out Cross Validation (LOOCV) to assess
classification performance. On each fold of the LOOCV, all but one
of the samples was used to train the classifier, while the remaining
sample was saved for validating the results. This procedure pro-
ceeded until each sample had performed once as the test set. Since
no random sampling is involved its results are deterministic [42].
This procedure is an attractive one for three reasons. Firstly, LOOCV
allows us to train with the greatest amount of data each time,
which increases the chance that the classifier is accurate. Secondly,
LOOCV can eliminate the influence of random factors, to ensure the
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Fig. 2. Means and standard errors of reaction times (A) and attentional bias scores (B) in the dot-probe task, for MDD patients and HCs.

Table 1

Split-half reliability measures of each trial type in MDD patients and HCs.

Reaction times

Bias scores

Happy-neutral Happy-neutral Sad-neutral Sad-neutral Happy-neutral Sad-neutral
Group  valid invalid valid invalid pairs pairs
MDDs  0.97 0.92 0.94 0.94 -0.18 —-0.18
HCs 0.8 0.72 0.92 0.94 0.04 -0.12

validation process can be completely repeated. Finally, the LOOCV
is more suitable for the classification of low number of samples,
and can better prevent overfitting [43,44].

3. Results and analysis
3.1. Behavioral measures

3.1.1. Comparisons of mean RTs between the two groups in
valid/invalid trials

Average RTs and reliability coefficients in both two groups un-
der different conditions are shown in Fig. 2. Statistical analysis
showed that main effect of validity (Fig. 2(A), Fy 3, =6.86, p <0.02,
n*>=0.002) and group x type x validity interaction (Fy3;=4.48,
p <0.05, n?2=0.005) were significant. No other main effects or in-
teractions obtained significance. To further assess the 3-way in-
teraction, a simple effect test was performed. The results showed
that the validity effect was significant for sad-neutral pairs in
MDDs (F;3,=9.60, p<0.005). No other significant effects were
found. These data showed that MDD patients had shorter RTs for
valid (193.48 & 75.45 ms) than invalid (198.40 4+ 79.66 ms) sad trials
(p <0.05). Table 1 shows reliability coefficients for each trial type
in MDD patients and HCs. As illustrated in Table 1, reliability coef-
ficients of RTs in the four conditions were all above 0.7.

3.1.2. Attentional bias scores in the two groups for emotional faces
To verify that MDD patients would selectively attend to sad
faces, repeated-measures ANOVA was conducted with type and
group to assess bias scores. Only a group x type interaction showed
significance (Fig. 2(B), Fy 3p =4.52, p <0.05, n2=0.47). Follow-up
tests revealed that bias scores in the MDD group for sad faces
were significantly higher than those of the HC group (£(32)=5.24,
p <0.03). However, group differences in bias scores hardly deter-
mined which group showed bias; this may be caused by an inde-
pendent bias from one of the groups, or varying degrees of bias
from both groups [36]. To identify the group showing bias, one-
sample t-test was performed by comparing with zero. In MDD pa-

tients, bias scores of sad faces were significantly higher than zero
(t(16)=2.45, p <0.05), which indicated the MDD group showed
bias toward negative pictures. In HCs, no bias score was differ-
ent from zero. However, reliability coefficients of bias scores for
all face-pairs showed poor reliability (Table 1).

3.1.3. Cue-evoked ERP component

P100 measures are summarized in Table 2. No significant main
and interaction effects were found for P100 amplitude. In P100
latency, there was a significant group difference (F;3,=284.68,
p <0.0005, n2=0.35), indicating that P100 latency in MDD patients
was significantly shorter than that of HC individuals. In addition, a
main effect of hemisphere (F; 3, =41.62, p <0.0005, n*>=0.12), and
hemisphere x group interaction effect (F;3;=84.33, p<0.0005,
n2=0.25) were observed. For the above two-way interaction,
follow-up simple effects test revealed that MDD patients had sig-
nificantly decreased P100 latency over right parietal-occipital than
HCs for all face-pairs (Fig. 3, Fy 32 =269.38, p <0.0005).

3.1.4. Target-evoked ERP component

P300 measures are summarized in Table 2. For P300 amplitude,
the main effects of type (Fj3;=4.93, p<0.04, n>=0.01) and valid-
ity (F132=4.32, p <0.05, n?>=0.002), as well as validity x group in-
teraction (F; 35 =9.51, p <0.005, n?=0.005), margin type x validity
interaction (F3;=3.48, p<0.08, n?=0.01), and margin interac-
tion effect of type x validity x electrode site (F;3;=3.89, p <0.06,
n2=0.0007) were significant. No other main effects or interac-
tions showed significance. Then, a separate RM-ANOVA was con-
ducted for each group. The main effect of validity (F;3,=14.44,
p <0.003, n%2=0.04) and type x validity x electrode site interaction
(F1,16=5.76, p<0.04, n*>=0.001) were significant only in MDD
group. For the type x validity x electrode site interaction, follow-
up simple effects analysis revealed that MDD patients had greater
P300 amplitude to valid than invalid sad trials at the Cz (Fy 5=
10.57, p<0.01) and Pz (Fig. 4, F1,16=38.03, p <0.02) channels.

For P300 latency, a main effect of electrode site (F;3;=6.73,
p<0.02, 1n2=0.05) and a significant interactive effect with
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Table 2
Peak latencies and mean amplitudes for the P100 and P300 components.
Group  Type P1 Am*(SD) P1 La**(SD) Val#** P3 Am*(SD) P3 La**(SD)
OL OR oL OR Cz Pz Cz Pz
MDDs  happy-neutral ~ 1.33 0.73 13882  109.76  valid 3.41(437) 455(4.03) 356.92(35.06)  350.46(35.64)
-046  -047 -2.63 -19 invalid  4.53(5.06) 4.42(3.81)  355.69(29.36)  353.23(37.96)
sad-neutral 1.38 11 140.71 109.18 valid 5.57(3.33) 6.36(3.95) 345.23(29.68) 343.08(30.86)
-047 -047 -289 -16 invalid ~ 3.98(3.51) 4.14(427) 354.77(26.04)  350.77(34.19)
HCs happy-neutral 2 217 142.59 148.12 valid 2.87(2.98)  2.23(3.12) 364.29(57.03) 327.71(31.43)
—0.46 —0.47 —2.63 -1.9 invalid 3.39(3.73) 2.79(2.45) 359.43(47.94) 330.57(39.74)
sad-neutral 228 234 14318 14824  valid 426(3.83) 3.64(3.33) 358.29(55.46)  326(38.67)
-047 -047 -289 -16 invalid ~ 3.16(4.18)  3.53(2.86)  358(51.24) 323.71(40.16)
SD, standard deviation; *Am, Amplitude; **La, Latency; ***Val, Validity; OL =ERP average of channels PO7 and O1; OR =ERP average of chan-
nels PO8 and 02;
A i PO7 " PO8
8 [(uv) B[(uv)
4r
2r
0
2 3
P100
4 L i 1 1 L ] 4 1 L " i A 3
-100 0 100 200 300 400 500 600(ms)  -100 0 100 200 300 400 500 600(ms)
sl () °rwv
01 02
-4t -4t
21 21
0 omawy < =~ b 0
’f
21 2}
ﬁ
P100
4 f L L L L ) 4 L L L L L )
-100 0 100 200 300 400 500 600(ms) -100 0 100 200 300 400 500 600 (ms)
—— HC happy-neutral - = =-MDD happy-neutral ——— HC sad-neutral - = = -MDD sad-neutral
3pv
-2uv

HC happy-neutral

MDD happy-neutral

MDD sad-neutral

HC sad-neutral

Fig. 3. Grand average ERPs elicited by sad-neutral and happy-neutral pairs at PO7, PO8, O1 and 02 sites in MDD patients and HCs (A), along with scalp topographies of the
P100 component (140-160 ms) in MDD patients and HCs, displaying a maximum at occipital electrodes (B).

group x electrode site (F;3;=4.25, p=0.05, n>=0.03), were de-
tected. Simple effects analysis revealed that P300 latency at chan-
nel Pz was shorter than that at channel Cz in MDD individuals,
which was not observed in HC individuals.

3.2. (lassification performance
Tables 3 and 4 report the numbers of features selected by each

algorithm and the corresponding average classification accuracy
(KNN, C4.5, SMO, LR) for the P100 component in two different

conditions, and for the P300 component in four different condi-
tions, respectively. The accuracy performances of the four classi-
fiers were greatly improved after features selection by the pro-
posed heuristics. As indicated in Table 3, CFS was the most effec-
tive feature selection algorithm for happy-neutral pairs, obtaining 6
features and a mean accuracy of 85.29%. Classification performance
was improved by about 14% compared with that obtained using all
features. For sad-neutral pairs, the best method for screening fea-
tures was ReliefF, which obtained 6 features and a mean accuracy
of 69.78%. Classification performance was improved by about 20%
compared with that recorded with all features used. However, CFS
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Table 3
Comparison of different feature selection algorithms based on the P100 component.
Feature selection methods  Happy-neutral pairs Sad-neutral pairs
Mean accuracy Mean features Mean accuracy Mean features
number number
None 71.35% 98 49.41% 98
CFS 85.29% 6 66.18% 3
ReliefF 79.41% 9 69.78% 6
GainRatio 83.82% 8 67.65% 8

Mean Accuracy, mean accuracy of the four classifiers (KNN, C4.5, SMO and LR); mean features number, mean number of
needed features for the four classifiers to obtain highest accuracies using each feature selection method (CFS, ReliefF and RG).

Table 4

Comparison of different feature selection algorithms based on the P300 component.
Feature selection Happy-neutral valid Happy-neutral invalid Sad-neutral valid Sad-neutral invalid
methods

Mean accuracy Mean features  Mean accuracy Mean features  Mean accuracy Mean features  Mean accuracy Mean features

number number number number
None 71.33% 98 54.12% 98 69.12% 98 70.00% 98
CFS 82.35% 9 68.24% 3 88.94% 10 87.03% 19
ReliefF 79.41% 10 62.94% 3 80.25% 14 83.92% 15
GainRatio 80.29% 12 64.71% 8 86.00% 8 80.46% 3

Mean accuracy, mean accuracy of the four classifiers (KNN, C4.5, SMO and LR); mean features number, mean number of needed features for the four classifiers to obtain
highest accuracies using each feature selection method (CFS, ReliefF and RG).
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Fig. 5. Classification accuracies of KNN, C4.5, SMO, and LR for the P100 component elicited by happy-neutral pairs (A), and P300 component elicited by sad-neutral valid
trials (B). Using CFS as a feature selection method, ROC curves of MDD patients in the four classifiers based on the P100 evoked by happy-neutral pairs and P300 evoked by

sad-neutral valid trials, shown in (C) and (D), respectively.

used fewer features (only 3), and reached an accuracy of 66.18%.
Compared with ReliefF and GR, CFS took less time in feature selec-
tion.

As shown in Table 4, the best feature selection method was CFS
for the P300 evoked by the four conditions. The mean classifica-
tion accuracy of the P300 evoked by valid sad trials was higher
than those of other conditions, deriving 10 features with a mean
accuracy of 88.94%.

Fig. 5 shows the classification accuracy for the three feature
extraction algorithms (CFS, ReliefF and RG) in combination, with
different types of classifiers (KNN, C4.5, SMO, LR) using LOOCV
method. As shown in Fig. 5(A), in the P100 component elicited by
happy-neutral pairs, using CFS as a feature selection method, C4.5
had the highest classification accuracy, with classification accuracy
reaching 91.67%. The area under the receiver operating character-
istic (ROC) curve (AUC) of C4.5 was 0.86 (Fig. 5(C)). For the P300
component elicited by sad-neutral valid pairs, combination of KNN
(k=3) and CFS or GR yielded an accuracy of 94.12% (Fig. 5(B)) and
an AUC of 0.92 for CFS (Fig. 5(D)). These findings indicated that
combined C4.5 and CFS achieved the highest accuracy for the cue-
ERP component, and combined KNN and CFS yielded the highest
accuracy for the target-ERP component. Above all, we consider that
CFS is the most effective feature selection method in discriminat-
ing between MDD patients and HCs.

4. Discussion

The present study assessed attentional bias to emotional faces
in MDD patients by examining ERP components in a dot-probe
task. With the purpose of finding a more efficient method for de-
tecting MDD, a combination of three feature selection methods and
four classification algorithms was evaluated. The following findings
emerged. Firstly, we assessed the behavioral aspects of attentional
mechanisms, as reflected in RT. The results confirmed the notion
that MDD individuals have significantly faster RT to valid sad trials
compared to invalid sad trials. Specifically, strongest split-half reli-
ability was obtained for RTs. Using a dot-probe task with emotional
faces as stimuli, Gotlib et al. [45] found attentional bias to negative
faces in depression. Joormann and Gotlib [12] and Joormann et al.
[36] reported similar findings in previously depressed participants
and girls at high risk of depression, respectively. We did replicate
Gotlib et al. findings in depression, demonstrating negative atten-
tional bias by the RT index in the dot-probe task (i.e., difference
in RT for valid sad and invalid sad trials) [45]. Additionally, a bias
score significantly larger than zero was observed for sad-neutral
pairs in MDD patients, but not HCs. However, split-half reliability
of RT bias scores neared zero. This is consistent with previous find-
ings that the RT bias scores of attentional bias exhibit poor relia-
bility [13]. Behavioral results indicated that MDD patients were bi-
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ased to sad faces in contrast to HCs, which corroborates a previous
study [45].

Secondly, early P100 component analysis showed that MDD pa-
tients had relatively shorter latency for all face pairs over right
parietal-occipital regions compared with HC individuals. Electro-
physiological recording and neuroimaging studies reported that fa-
cial emotion processing mainly occurs in the right hemisphere of
the brain. Sato et al. [46] found that the occipital and temporal
cortices, especially in the right hemisphere, have higher activation
during the process of watching dynamic pictures by fMRI. A large
number of studies also pointed out that the right hemisphere has
advantages in the field of facial processing, e.g. in face recogni-
tion [19] and face-selective activation [47]. According to a study
by Zhao et al. [48], early perceptual processing abnormality in the
depression group only occurs at the right posterior sites. Addition-
ally, the decreased P100 latency for all facial expression indexes in
MDD patients may imply that cognitive biases to emotional facial
stimuli might not have arisen yet during the earliest stages of pre-
conscious processing.

The P100 induced by happy-neutral pairs showed higher classi-
fication performance compared with sad-neutral pairs. The classi-
fication performance of C4.5 and CFS combination reached 91.67%
using the LAR and Ppmean features from channels Oz and O2.
The AUC of KNN was 0.86, which was equal to that of C4.5, but
C4.5 used fewer features. Right hemisphere deficiency in depres-
sion during perceptual processing has been reported previously
[47,48]. The current experimental results showed that classification
accuracy is highest for distinguishing between MDD patients and
HCs when features are selected from the right parietal-occipital
region.

Thirdly, the P300 amplitude of MDD patients was significantly
greater when the probe replaced sad faces than when it was
shown after neutral faces, with the maximal value at parietal
recording sites. After presentation of probe stimuli, ERP analy-
sis helped examine how attention bias affects cognitive process-
ing [10,20,21]. Previous studies considered that the P300 compo-
nent reflect an activity involved in attentional resource allocation
[24,25]. The ERP task induced by the P300 is the most commonly
used ‘oddball task’ [49,50]. To the best of our knowledge, there
are no published studies on P300 modulation to a visual probe in
MDD patients using a dot-probe task. Enhanced P300 amplitude
in response to valid sad trials in MDD patients, reflected the diffi-
culty in attentional disengagement across negative stimuli, which
supports previous findings suggesting that depressed individuals
have difficulty in disengaging attention from negative events [6,7].
Meanwhile, negativity bias may excessively enhance memory for
negative materials in depression.

The accuracy of CFS and KNN combination achieved 94.12% and
an AUC of 0.92 using 3 features, including PAR, Mobility and La-
tency, which were extracted at channels Pz and C1. In addition,
the classification performance of the GR and KNN combination also
reached 94.12%. For KNN, both GR and CFS provided a small num-
ber of feature sets and obtained good classification accuracy. Com-
pared to previous studies [28], we used 3 features from two elec-
trodes to achieve good classification performance. The current find-
ings indicated that the P300 induced by valid sad trials in MDD has
more sensitive information, and may be helpful for assisted diag-
nosis of depression.

Finally, classification performance after feature selection was
improved obviously compared with those using all the features, es-
pecially for CFS. Classification accuracy of the combination of CFS
with all classifiers has increased by more than 11%. The advan-
tage of CFS over other methods is that it can automatically deter-
mine the number of distinguishing features [51]. Hall and Holmes
[38] showed that CFS performs consistently well on different data
sets, suggesting that CFS is a good overall performer.

The present findings supported the notion that depressive par-
ticipants display attentional bias to negative stimuli in emotion
processing in MDD. However, because of the relatively small sam-
ple size of bidirectional bipolar disorder, high-risk of depression
and schizophrenia, we could not compare the different character-
istics of attentional bias in various diseases when dealing with
emotional stimuli. This is a limitation of the present work. We are
still collecting data on the above mood disorders. In addition, due
to the high trial-to-trial variability and the unfavorable ratio be-
tween signal (ERP) and noise, implementation classification using
ERP on a single trial basis, and extracting effective features for real-
time diagnosis of depression are also challenging problems. In fu-
ture studies, effective feature extraction algorithms should be de-
veloped to identify and diagnose depression.

5. Conclusion

Event-Related Potentials (ERPs) measured on the human scalp
reflect brain electrical activity related to stimulus processing. To
assess attentional bias in major depression, we focused on reac-
tion time, and P100 and P300 components. Reaction time with the
strongest reliability indicated that MDD patients selectively attend
to sad faces. At the neurological level, MDD individuals exhibit dif-
ficulty in disengaging attention from sad faces, which was reflected
in the P300. Furthermore, data mining indicated that CFS is the
most effective feature selection method to discriminate between
MDD patients and HCs. The CFS and C4.5 combination achieved
the highest accuracy, with a classification accuracy above 92% for
the P100 induced by happy-neutral pairs. The CFS and KNN (K=3)
combination achieved the highest accuracy, with a classification
accuracy above 94% for the P300 induced by valid sad trials. The
P300 showed better classification results compared with the P100.
These findings not only provide novel insights into emotional neg-
ativity biases in depression, but also reveal an auxiliary method for
identifying depression in a portable system.
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