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Abstract—Depression is one of the most common mental ill-
nesses, but few of the currently proposed in-depth models based
on social media data take into account both temporal and spatial
information in the data for the detection of depression. In this pa-
per, we present an efficient, low-covariance multimodal integrated
spatio-temporal converter framework called DepMSTAT, which
aims to detect depression using acoustic and visual features in social
media data. The framework consists of four modules: a data pre-
processing module, a token generation module, a Spatial-Temporal
Attentional Transformer (STAT) module, and a depression classi-
fier module. To efficiently capture spatial and temporal correlations
in multimodal social media depression data, a plug-and-play STAT
module is proposed. The module is capable of extracting unimodal
spatio-temporal features and fusing unimodal information, play-
ing a key role in the analysis of acoustic and visual features in
social media data. Through extensive experiments on a depression
database (D-Vlog), the method in this paper shows high accuracy
(71.53%) in depression detection, achieving a performance that
exceeds most models. This work provides a scaffold for studies
based on multimodal data that assists in the detection of depression.

Index Terms—Depression detection, spatio-temporal attention,
transformer, vlog data.

I. INTRODUCTION

D EPRESSION is one of the most common mental disorders.
According to the World Health Organization (WHO),
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depression is expected to become the world’s number one
disease burden by 2030 [1]. The lifetime risk of depression
is 15% to 18%, and the worst outcome is that many people
eventually choose to commit suicide. About 50 per cent of
suicides among suicide risk factors can be attributed to depres-
sion [2]. Despite efforts to recognise and treat depression, new
data suggest that the prevalence of mental disorders may be
increasing, particularly among younger people. To help clini-
cians work more efficiently, the first step in treating depression is
depression detection, the process of assessing whether a person
has depression or depressive symptoms. It is therefore crucial
to develop an automated and intelligent depression detection
system.

Depressed people have lower levels of social behaviour [3],
such as fewer facial movements, fewer body and hand gestures,
less eye contact and a lack of smiling. Current methods of
diagnosing depression rely almost exclusively on doctor-patient
interaction and scale analysis [4], with the obvious disadvantage
that both the doctor’s diagnosis and the patient’s completion of
the scale are subjective in nature. Therefore, an objective and
valid method of predicting clinical outcomes in depression is
important to improve the detection of depression. Most depres-
sion detection research consists mainly of hand-crafted features
methods [5], [6], [7] and deep learning-based methods [8], [9].
Compared to gait [10] and physiological signals (electroen-
cephalogram (EEG) [11], electrocardiography (ECG) [12], etc.),
facial cues and voice signals are easier to capture. Therefore, the
detection of depression through audiovisual [8] information has
received considerable attention.

Most previous studies have extracted either semantic or tem-
poral features of the data separately to detect depression, and
few studies have considered both features of equal importance.
We believe that video streaming data is a stack of semantic in-
formation in the temporal dimension, in which facial expression
semantic features can be regarded as facial emotions formed
by the coordinate position relationship of facial landmarks in a
frame. As shown in Fig. 1, the temporal features of the facial
expression data express more of the trend of emotional changes,
while the semantic features carry more about the mutual infor-
mation between facial landmarks to convey the facial emotion
information at a certain moment.

Previous studies have used only face data [5], [13] or voice
data [14] to extract features for depression detection. This line
of studies ignored the interaction of information between the
two types of data, face and speech. Other studies [15], [16] have
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Fig. 1. Simulates the information contained in a sequence of faces. The
coordinate relationship between all the facial landmarks in a frame can reflect
the momentary semantic information, i.e. the facial emotions at that moment
(indicated by blue squares). Changes in individual facial landmarks over time
reflect information about changes in facial emotion (indicated by the green
squares). The light blue circle in the middle of the diagram represents the facial
landmarks data in the video stream.

addressed this issue by using text, speech and facial expressions
as inputs to depression detection models. However, little atten-
tion has been paid to the semantic information in single modality
data. Therefore, how to focus on both the semantic and temporal
information of single-modality data to effectively explore these
two types of information has become a problem that urgently
needs to be solved in depression detection.

In this study, our research is motivated by the use of semantic
information in the spatial dimension and temporal information
of facial landmarks and speech data in a field environment to
improve the accuracy of depression detection models. By com-
bining features from different modalities, the emotional state of
individuals can be better understood, facilitating early detection
and intervention of depressive symptoms. We aim to further
fuse spatio-temporal information from unimodal data in social
network data to detect depression. In contrast to previous meth-
ods [9], [17], [18], [19], we propose an end-to-end lightweight
Multimodal Spatio-Temporal Attention Transformer approach
for Depression detection (named: DepMSTAT). The proposed
Spatio-Temporal Attentional Transformer (STAT) module can
be used to extract and fuse temporal and spatial information
from facial and speech data. Specifically, the method first pre-
processes the visual and acoustic data from the social media.
Second, the Spatial Attention Block (SAB) and the Temporal
Attention Block (TAB) in the STAT module are used to extract
temporal and spatial features from the data, and these features are
fused using the Multimodal Fusion Transformer Block (MTB).
Finally, the features extracted from the social media data are fed
into a classifier for voting classification. Fig. 2 shows a diagram
of the main framework of our approach. The contributions of
this paper are three-folds:
� We propose an end-to-end transformer framework for de-

pression detection (DepMSTAT). The framework is able
to fully integrate spatio-temporal features of streaming
video data. The framework uses a simple voting mechanism

for classification and is able to detect depression more
effectively.

� We propose a plug-and-play multimodal spatio-temporal
fusion attention module (STAT) consisting of a temporal
attention block, a spatial attention block, and a multimodal
fusion attention block. It captures the global dependencies
of temporal and spatial information of visual and acoustic
sequences in a video stream and fuses these features using
an earlier fusion strategy.

� The DepMSTAT framework surpasses the accuracy of the
baseline method on the Vlog dataset and drastically reduces
the number of parameters compared to state-of-the-art
algorithms.

The remaining sections of the paper proceed as follows.
Section II discusses related work in current research. Section III
describes the methodology of our work. The results and dis-
cussion are presented in Section IV. Section V presents the
conclusions and suggestions for future research.

II. RELATED WORK

In this section, we briefly describe the knowledge related to
transformers and the evolution of previous research on depres-
sion detection based on deep learning.

A. Transformer and Self-Attention

The transformer was first proposed in [20] for machine trans-
lation by stacking multi-headed self-attentive and feed-forward
MLP layers to capture the long-term relevance of words. The
transformer has become increasingly popular in many natural
language processing (NLP) tasks [21], [22], [23], due to its
powerful performance. Recurrent neural networks have been
replaced by transformer for sequential tasks (speech process-
ing [23], [24], computer vision [25]). Transformer has been
progressively extended to tasks that deal with non-sequential
problems [26], [27]. This is made possible by the key com-
ponents of Transformer, namely the self-attentive mechanism,
the residual connections, and the feed-forward neural network.
To facilitate the understanding of this paper, we present the
detailed structure of the self-attentive mechanism with residual
connections in Fig. 3. In the figure, the self-attentive mechanism
looks at and decides the more important parts of the input
sequence, thus facilitating the capture of global information from
the input sequence. The advantages of residual connections are:
alleviation of the gradient disappearance problem and alleviation
of the weight matrix degradation problem.

Dosovitskiy et al. proposed the Visual Transformer
(VIT) [26], revealing the great potential of transformer-based
models for image classification. As a result, transformers soon
had a profound impact on many computer vision tasks [28],
[29]. The researchers worked on applying transformer networks
to spatio-temporal data modelling [30] and multimodal learning
tasks [31], [32] by introducing spatio-temporal attention mech-
anisms and multimodal encoder-decoder designs and achieving
more comprehensive and accurate modelling. Ding et al. have
proposed a simple yet effective Dual Attention Visual Trans-
formers (DaViT) [33], which uses self-attention mechanisms
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Fig. 2. DepMSTAT model depression detection processing flow. The visual and acoustic features obtained from the video stream are fed into K tandem STAT
encoder modules after data preprocessing and data embedding to extract temporal features, spatial features, and fused features. Depression classifier receives the
features sequence representation from the STAT encoder and predicts the depression label.

Fig. 3. Detailed structure of self-attention in a residual form.

with spatial and channel tokens to capture global context while
maintaining computational efficiency. It has shown excellent
performance on image classification tasks. Deep fusion of mul-
timodal data is an important topic that improves performance
by using multiple input sources. However, it is a challenge
to extract data features efficiently using a single transformer,
while ensuring that features between different modalities can
be fully fused. Xu et al. systematically reviewed the design
and training of transformers in multimodal environments and
summarised the main challenges and solutions in the multimodal
domain [34]. In recent years, multimodal research based on the
Transformer and Attention mechanisms in various fields has
contributed significantly to the development of their respective
fields, e.g. humour detection [35], product detection [36], data
alignment in time series modelling of human behaviour [37],
dance choreography [38], and so on. The transformer encoder
was first applied in [17] to extract long-term temporal context
information from long sequences of audio and visual data on
depression. Guo et al. [18] proposed a multimodal depression
detection method based on the TOpic Attentive Transformer

(TOAT) by introducing a transformer pre-training model. The
transformer encoder was introduced directly in [19] to extract
features for depression detection. Unlike the aforementioned
methods, we aim to build an end-to-end fusion pipeline capable
of effectively detecting depression, extracting temporal and spa-
tial features from each type of multimodal data, and employing
an early feature fusion strategy.

B. Deep Learning-Based Depression Detection

Current research focuses on applying deep learning [8] to de-
pression detection, which is more effective than hand-crafted [6],
[39] feature extraction. Most of the research data on depression
detection is not publicly available, and only a few small datasets
in laboratory scenarios are publicly available (AVEC2019 [40],
etc.). Most of these are based on laboratory scenarios, with
a lack of data studies in real-world scenarios. Social media
users share their emotions on social media, including users with
mental health problems. As a result, some studies [41], [42]
are beginning to use social media data for the early detection
of depression. The public availability of the large social media
dataset D-Vlog [19] provides favourable data to study depression
detection in a real-world scenario.

Some researchers have used single-modality data to detect
depression. He et al. [43] used a single face image as input to
the model and extracted local and global features in the face.
To increase the range of receptive field of the convolutional
neural network feature map, the face was divided into four
regions of different sizes as input to the model in [44]. However,
similar studies have ignored the dynamic changes between face
sequences. A 3D network model for depression detection with
residual connectivity that effectively avoids overfitting problems
is developed in [45]. The model consists of a multiscale spa-
tiotemporal network (MSN) to effectively represent facial infor-
mation related to depressive behavior in videos. However, this
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study first requires pre-training on the VGGFace2 [46] dataset.
Al Jazaery et al. [47] proposed an RNN-C3D depth model for
depression detection that incorporates facial changes and head
motion information. The model is able to model local and global
spatio-temporal information from successive facial expressions.
Due to the limited training data for deep models, some studies
have used pre-training for depression detection [48], [49]. There
is also research working towards an end-to-end model. He
et al. [13] propose an end-to-end deep system capable of extract-
ing high-level features from video frames. The model is a 3D
convolutional neural network equipped with the spatiotemporal
feature aggregation module (STFAM). An audio-based bipolar
disorder detection method has been proposed by Du et al. [50].
The method integrates the inception module with long-term
memory (LSTM) in feature sequences and is able to acquire
multi-scale temporal information for depression detection.

Some researchers believe that multimodal data contain rich
information and that multimodal fusion is better than single-
modality data for depression detection. Dongle et al. [51] used
pre-trained models to extract deep speaker recognition (SR) and
speech emotion recognition (SER) features and combined the
complementary information of these two features to capture
the difference between voice and emotion. For multimodal data
fusion studies, gated recurrent unit (GRU) is used to extract
features from text, speech and video data to identify depres-
sion [16]. Recently, some studies have introduced transformer
encoders to depression recognition tasks [17], [18]. In our previ-
ous work [9], by embedding the spatio-temporal features in the
matrix V, the attention mechanism was guided to learn the global
information efficiently. However, the model has a large number
of parameters, which is not very friendly for training on small
datasets, so it is necessary to reduce the number of parameters
while extracting the spatio-temporal fusion features to improve
the stability of the model.

III. METHOD

In this section, we formulaically define the data sequences
and propose a novel framework, i.e. DepMSTAT, to model the
multimodal data information of each frame and capture changes
in the temporal dimension.

A. Problem Formulation

Let us denote a single-modality data sequence as XSm. Sup-
pose each sequence XSm consists of T frames in length with
N feature points in each frame, and XSm ∈ RT×N×C can be
denoted as:

XSm = {X1, X2, . . . , Xt, · · ·XT } (1)

where m indicates a single-modality, in this paper, m ∈ {a, v}
is used to mark acoustic and visual data sequences, respectively.
Xt = {x1t , x2t , · · ·xNt } ∈ RN×C indicates the data points of the
tth frame in a specific order. Each x denotes a data vector of
dimension C for each single-modality. From another point of
view, XSm could be expressed as:

XSm = {X1, X2, . . . , Xn, · · ·XN} (2)

whereXn = {xn1 , xn2 , · · ·xnT } ∈ RT×C represents the sequence
composed of the nth data point in all frames.

B. Method Framework

As shown in Fig. 2, our model consists of four main func-
tional modules: Data Preprocessing Module, Token Genera-
tion Module, Spatio-Temporal Attentional Transformer Encoder
(STAT-encoder) and Depression Classifier. The STAT-encoder
extracts spatio-temporal information from multimodal data and
performs feature fusion. The Depression Classifier receives a
sample representation from the STAT-encoder and then predicts
the label of depression.

1) Data Preprocessing: Length normalization of social me-
dia video data of varying lengths is necessary and serves to
increase the amount of data in order to prevent over-fitting of
the model. Specifically, the data is cropped to a given length,
L. For data of insufficient length L, a polynomial interpolation
fitting method is used to interpolate the operation. Following this
approach, the number of samples in the training set, validation
set, and test sets is increased. Looking at the data durations in the
D-Vlog dataset, the longest duration is 3968.59 s and the shortest
duration is 23.62 s. Therefore, using too large a value for L will
result in a serious loss of information during upsampling for
data with short durations. Using too small a value for L will
result in segmented data with less time information. Therefore,
the sample length L is set to 300 for all data sequences. In our
previous work we also used this type of pre-processing [9].

To improve the convergence speed of the model, we perform
a max-min normalization on the data, which can be formulated
as:

X ′
Sm =

XSm −min(XSm)

max(XSm)−min(XSm)
(3)

2) Token Generation: To ensure uniformity of dimensional-
ity in feature fusion, we manipulated the dimensions of visual
and speech information as follows:

XSm = Reshape (X ′
Sm) (4)

where Reshape (·) is a reshape operator that makes XSa and
XSv have the same shape. And we use a two-layer Conv1d to
implement Reshape (·).

To enable the transformer encoder to exploit the sequential
relationship of the social media data, we append the learnable
location-based information of the sequential data, which can be
formulated as:

Xt = Xt + PEN , Xn = Xn + PET (5)

wherePEN is the matrix representingN semantic tokens shared
in all frames. Xn means the sequence composed of the same
type of data points in all frames. All kinds of data points share
the same PET , which means all data points in the same frame
share the same temporal position encoding. ThePEN andPET

are trained jointly with the whole model. Following the data
representation in Fig. 1, we add the semantic tokens and the
temporal position encoding tokens to the input data to form a
complete representation of each data point.
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Fig. 4. Main components of the STAT module proposed in this paper are the SAB (SA Block) for acquiring spatial information, the TAB (TA Block) for acquiring
temporal dimensional information, and the MTB (MT Block) fusion module for extracting information before the two modes. The illustration shows the structure
of STAT and the flow representation of the data. It helps to understand the flow of information in single-modality during spatial-temporal feature extraction and
multimodal information fusion.

3) STAT-Encoder: The key plug-and-play STAT module for
feature extraction is presented, as shown in Fig. 4. The STAT
consists of three blocks: the Spatial Attention Block (SAB), the
Temporal Attention Block (TAB), and the Multimodal Fusion
Transformer Block (MTB). The SAB is designed to model the
facial expression or voice state represented by each data point in
each frame. The TAB is designed to capture the changing pattern
of the facial expression or voice. The MTB is designed to fuse
spatio-temporal information between the two modalities, facial
expression and speech. This section first presents the structure
of the basic transformer block, and then introduces the STAT
module separately.

Basic Transformer Block: Typically, the transformer model is
a sequential stack of encoder and decoder blocks. The encoder
and decoder have a similar network architecture, but they use
different weighting parameters and consist of two sub-layers,
the Attention layer and the Position-wise Feed Forward Network
(FNN). This work uses the encoder block, hence the shortened
name “transformer” for the transformer encoder block below.
The attention mechanism is calculated as follows:

Att(X) = Attention (Q,K,V ) = fsoftmax

(
QK�
√
dk

)
V

(6)
where Q, K, and V denote the query matrix, the key matrix
and the value matrix respectively. dk is the key dimensionality.
When Q, K and V are matrix transformations from the same
vector, it is called self-attention; when Q and K, V are matrix
transformations from different vectors, it is called soft-attention.
Q,K, and V are calculated as follows:

Q = φ(X),K = ϕ(X),V = ψ(X) (7)

where φ(X), ϕ(X), and ψ(X) are three different trainable
linear transformations. X is a matrix representing all elements.

The FFN is a fully connected feedforward network consisting
of a linear transformation of two fully connected layers, where
the activation function of the first fully connected layer is the

ReLU activation function, which can be formulated as:

FFN(X) = max (0, XW1 + b1)W2 + b2 (8)

Thus the transformer is calculated as:

X = LN(LN(A t t(X) +X) + FFN(X)) (9)

where LN is a normalization layer.
STAT-Encoder: Inspired by the self-attention mechanism of

“spatial tokens” and “channel tokens” in [33], a STAT module
that introduces the attention mechanism of “temporal tokens”
into unimodal data to extract effective features is proposed.
Our model is based on the core idea of transformer, i.e. the
use of the attention mechanism. However, we do not directly
adopt the structure of transformer as in [17]. Instead, we have
designed a new structure, i.e. STAT, to make it more suitable for
multimodal depression detection. There are three subdivisions
in STAT: SAB, TAB and MTB.

Modelling semantic information has been an effective way
of facilitating depression detection tasks. For example, when a
person’s facial expression is a smile, the facial landmarks of the
mouth and eyebrows move together to form specific semantic
information. Therefore, we believe that it is important to capture
and model the semantic relevance of the training data. The spatial
features of the data are extracted using the SAB module with a
self-attention in the form of residuals. Because the output of tanh
can produce negative relations and is not restricted to positive
values [52], [53]. With more flexibility than softmax, we use tanh
as an alternative to softmax. Our attention formula is therefore
calculated as follows:

Atts = tanh

(
QK�
√
dk

)
V (10)

Equation (11) and (12) are then used to calculate the spatio
features X ′

Sm of the data XSm.

XRe
Sm = Re (XSm) (11)

X ′
Sm = LN

(
Atts

(
XRe

Sm

)
+XRe

Sm

)
(12)
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Algorithm 1: Training Scheme of Our Proposed Method.

Input: Multimodal depression dataset D = {(XSm,y)}.
Output: Prediction ŷ.
1: for i = 1 to Epoches do
2: for k = 1 to K do
3: Capture temporal features:

X ′
Sm = LN(Atts(Re(XSm)) + Re(XSm))

4: Capture spatial features: X ′′
Sm = LN(Atts

(Re′(X ′
Sm)) + Re′(X ′

Sm))
5: Capture spatio-temporal fusion features: Xout

Sa = LN
(L N(MultiHead(Qa,Kv,V v) +X ′′

Sa) +
FFN(X ′′

Sa))
and Xout

Sv

6: end for
7: Compute the final label:

ŷ = MLP(Concat(Xout
Sa , X

out
Sv ))

8: Compute loss L.
9: Backward L and update parameters.
10: end for

where X ′
Sm ∈ T × (N × C). The reshape operator Re(·) rep-

resents the data shape T ×N × C of XSm reshaped into
T × (N × C).

It is worth noting that correlations between frames in the
temporal dimension are closely related to the length of the time
interval. To better construct complex and uncertain correlations,
we have developed our framework TAB, which is a powerful
mechanism for capturing remote and proximal correlations in the
temporal dimension of the input data. The structure of the TAB is
shown in Fig. 3. TAB is used to capture single-modality temporal
information by using self-attention in the form of a residual. To
reduce the number of parameters in our model and to prevent
overfitting of our model, the entire transformer framework is
not used to extract single-modality temporal information. To
obtain temporal information about the data X ′

Sm, the shape
T × (N × C) of XSm needs to be reshaped into (N × C)× T
of XSm using the reshape operator Re′(·), which can be formu-
lated as:

XRe′
Sm = Re′ (X ′

Sm) (13)

The temporal features of the data XRe′
Sm are then extracted

using TAB module with a self-attention in the form of residual,
which can be formulated as:

X ′′
Sm = LN

(
Atts

(
XRe′

Sm

)
+XRe′

Sm

)
(14)

We believe that the data from the two single modalities are
complementary. For example, when a person is happy, their
facial expressions express positive emotions and their tone of
voice is lighter. On the other hand, when the person is sad,
their facial expressions show more negative emotions and their
tone of voice is more subdued. Therefore, multimodal data can
be fused using the cross-attention mechanism used in most
studies, which facilitates inter-modal information interaction.
The MTB is a multi-headed self-attention transform structure
that fuses spatio-temporal information from different modalities

and adaptively adjusts the weights of each type of feature. If
m = a, i.e. the input data, are acoustic sequences, based on the
XSa fusion features, which can be computed as:

X̃out
Sa = L N (MultiHead (Qa,Kv,V v) +X ′′

Sa) ,

Xout
Sa = LN

(
X̃out

Sa + FFN (X ′′
Sa)

) (15)

where MultiHead(Qa,Kv,V v) [20] is a multi-headed self-
attentive mechanism. Similarly, we can calculate the fusion fea-
tures based on Xout

Sv ∈ T × (N × C). In our view, the interplay
of the data from the two single-modalities with each other so
that the varying degrees of fusion of the two single-modality
data through the MTB feature layer can highlight the important
features of the single-modalities as shown in Fig. 4.

4) Depression Classifier: For the depression classifier, we
use the method in [9], consisting of an MLP layer with two
fully connected linear layers and a softmax layer. A subject’s
data can be divided into many data segments of length L by
the data preprocessing method mentioned in Section III-B1. In
this way, the L data segments will have L predicted values by
the classifier. To ensure fairness of comparison with previous
studies, the predicted result with the highest proportion of these
L predicted values is used as the predicted label for the subject
in this study.

The training process of the entire network is end-to-end, and
the loss function used in this study is the focal loss function [54].
The loss can be written as:

L =

{−(1− p̂)γ log(p̂) if y = 1
−p̂γ log(1− p̂) if y = 0

(16)

where pt =

{
p̂ if y = 1
1− p̂ otherwise

reflects the proximity to cate-

gory y. A largerpt indicates a closer proximity to category y, i.e. a
more accurate classification. γ is the adjustable factor. Therefore
focal loss function can be written L = −(1− pt)

γ log(pt). In
Algorithm 1, we elaborate the training scheme for DepMSTAT.

IV. EXPERIMENT

A. Datasets and Experiment Setting

1) Datasets: Current state-of-the-art methods have been ap-
plied to datasets such as AVEC, DAIC-WOZ, etc., however,
due to the small sample size of these datasets, we chose De-
pression Vlog (D-Vlog), which is currently the largest dataset
in terms of sample size, to support our study. D-Vlog [19] is
a multimodal depression detection dataset for real-world sce-
narios. This dataset is a balanced dataset that collects multiple
vlog videos published by 816 users from YouTube. From these
videos, 961 (i.e. approximately 160 hours) vlog video clips
were screened for eligibility, including 555 depressive and 406
non-depressive data. To protect user privacy, the dlib [55] and
opensmile [56] toolkits are used to extract facial landmarks and
acoustic features from the Vlog video data, respectively. The
D-Vlog dataset is divided into three parts: train, validation and
test sets, as shown in Table 1. We trained our model on the
training set, evaluated its performance on the validation set, and
tested our model on the test set.
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Fig. 5. Model STAT stacking layer on the value of K for activation selection, where Pre, Rec, and F1 denote Precision, Recall, and F1-Score, respectively.

TABLE I
NUMBER OF SAMPLE DIVISIONS IN THE D-VLOG DATASET [19]

2) Implementation Details: DepMSTAT are stacked using
2 Spatio-Temporal Attentional Transformer Blocks, which are
composed of four SAB, TAB, and MTB, where the number of
attentional heads is set to 4.

Our model is trained on two NVIDIA Tesla V100-PCIE
graphics cards of size 32 GB memory. All experiments and code
are implemented based on PyTorch [57] framework. We trained
our model with a batch size of 64 for a total of 500 epochs; an
SGD [58] optimizer with a momentum of 0.5 and a weight decay
of 0.001 is used. The initial training learning rate size is set to
0.001 and the learning rate is updated using cosine learning rate
decay [59]. To prevent overfitting, we employed dropout in the
linear layer, position encoder and transformer encoder, and the
dropout ratio [60] is set to 0.5 and flooding [61] is used with
a b-value of 0.44. We used the same metrics to evaluate the
classification as used in [19], including precision, recall and f1
score.

B. Parameters of the Model

Different parameters in a deep network model can lead to
completely different performances, so choosing the right pa-
rameters is an important issue. Therefore, we first identified
the important parameter in the model, the K-value of the STAT
stack number. The other parameters of the model are described
before the experiments. The learning rate is 0.001, and the
input features for the depression classifier use a combination
of different modalities.

To observe the effect of the size of K on the performance of
the model with a batch size of 64, we set the search set of K
values to {1, 2, 3, 4, 5, 6}, as shown in Fig. 5, and the model
performs best when the K value is 2. When K = 3, there is a
drop in results, possibly due to changes in the model structure
or multimodal data affected by environmental factors. Table II
reports the FLOPs and PARAMs for different values of stacking
K in this method. This is probably because when the value of

TABLE II
FLOPS AND PARAMETERS OF THE PROPOSED METHOD AT DIFFERENT VALUES

OF K

K is 1, the model has fewer network layers and is not able to
fully fit the features in the data. As the value of K increases, the
performance of the model decreases, which may be related to
the over-fitting of the model.

C. Comparison With Previous Methods

To validate the overall performance of our models, we have
compared a wide range of models, FR [62], K-Nearest Neigh-
bors based Fusion (kNN-Fusion) [64], Bi-directional LSTM
(BLSTM), Tensor Fusion Network (TFN) [67], Depression De-
tector [19], Time-aware Attention Multimodal Fusion Network
(TAMFN) [70], SeResNet50 [72], SeResNeXt50 [72], Incep-
tionV3 [75], Xception [77], DenseNet201 [78], CondenseNet74-
8 [63], EfficientNet-B7 [65], ViT-B/16 [26], DeiT-S/16 [68],
A-ViT [69], MTF [71], TinyViT [73], and T-GCN [74]. The
two most recent methods, TBOS [76], and STST [9] respec-
tively. FR and KNN-Fusion are traditional machine learning
methods, where KNN-Fusion uses decision level fusion methods
to fuse information from audio and video to detect depression.
BLSTM [66] have been shown to be effective in extracting time-
series features from both data modalities to detect depression.
TFN is a network structure in end-to-end trained multimodal
sentiment analysis. Depression Detector is an acoustic and vi-
sual multimodal fusion network designed to detect depressions
based on cross-transformer encoders. TAMFN is a time-aware
attention-based multimodal fusion depression detection net-
work that fully mines and fuses multimodal features. SeRes-
Net50, SeResNeXt50, InceptionV3, Xception, DenseNet201,
CondenseNet74-8, EfficientNet-B7, ViT-B/16, DeiT-S/16, A-
ViT, MTF, TinyViT, and T-GCN are some of the classic deep

Authorized licensed use limited to: Lanzhou University. Downloaded on June 11,2024 at 02:35:16 UTC from IEEE Xplore.  Restrictions apply. 



TAO et al.: DEPMSTAT: MULTIMODAL SPATIO-TEMPORAL ATTENTIONAL TRANSFORMER FOR DEPRESSION DETECTION 2963

TABLE III
DVLOG-PERFORMANCE COMPARISONS BETWEEN BASELINE MODELS AND THE PROPOSED MODEL

learning methods. TBOS is proposed as a new temporal convo-
lutional converter with knowledge embedding to solve the joint
task of depression detection and emotion recognition. STST
explores spatio-temporal features in a multimodal depression
detection task, but the large number of parameters in this method
results in a less stable model that requires the use of many
training techniques.

Table III shows a comparison of DepMSTAT with several
classical models, including traditional machine learning and
deep learning methods, as well as mainstream approaches. The
performance of machine learning models is not as good as that of
deep learning models, which could be attributed to the superior
fitting capability of deep models to the data. Regarding classical
deep learning methods, the approach proposed in this paper takes
into account the temporal and spatial features of single-modal
data and emphasizes the effective fusion of different modalities
through complementary attention. Overall, DepMSTAT shows
superior performance compared to other classical methods on
the D-Vlog dataset with a precision of 71.53, a recall of 75.60
and an F1-score of 73.51. Furthermore, compared to existing
methods, DepMSTAT not only simultaneously captures the
spatiotemporal information of single-modal data (in contrast
to [19], [70], [76]) but also effectively reduces the parameter
count of the model (in contrast to [9]). The proposed SAB, TAB,
and MTB modules contribute to the model’s attention towards
common features associated with depression in multimodal data,
potentially enhancing the accuracy of depression diagnosis.

D. Ablation Study

In this section, we will present ablation experiments of the
model that will demonstrate the effectiveness of our model from
three different perspectives.

1) Different Connection Type: A simple and effective fusion
of data from different modalities is required before inputting
them into the depression classifier model. To validate the ef-
fectiveness of the feature fusion method used in the depression
classifier, experiments are designed to compare the effects of
two feature fusion methods, adding and concatenating different
features, on the depression detection performance of the model.

TABLE IV
TWO CONNECTIONS TO FEATURES IN DEPRESSION CLASSIFIER

TABLE V
ABLATION STUDIES DIFFERENT SUB-MODULE PERFORMANCE RESULTS

As shown in Table IV, the feature fusion approach using direct
adding is lower than the approach of concatenating different
modal features for the evaluation metrics of recall, f1 score, and
accuracy. This suggests that the direct addition approach may
mask the variability of the different modal features compared to
the direct concatenation approach, resulting in reduced recogni-
tion performance of the model. As illustrated by the features
in Fig. 6, the acoustic features are more dispersed than the
extracted visual features and are more likely to show differences
between patients and normal subjects. Therefore, in this paper,
features from different modalities are connected and fed into the
depression classifier for depression classification.

2) Effectiveness of TAB and SAB: To verify the effectiveness
of the two modules, TAB and SAB, in STAT, we designed three
sets of ablation experiments: omitting the TAB module, omitting
the SAB module, and omitting the TAB+SAB module. As can
be seen from the first three rows of the ablation experiment in
Table V, the recall and F1 scores for SAB+MTB are higher
than those for TAB+MTB and MTB.The Precision (68.08%),
Recall (78.04%) and F1 scores (72.72%) for TAB+MTB are

Authorized licensed use limited to: Lanzhou University. Downloaded on June 11,2024 at 02:35:16 UTC from IEEE Xplore.  Restrictions apply. 



2964 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Fig. 6. Each feature uses four different kernel PCA dimensionality reduction methods, and the kernel functions are linear kernel, poly kernel, rbf kernel and
sigmoid kernel respectively. The triangle (purple) represents data from normal individuals, and the circle (green) represents data from depressed individuals.

lower than those evaluated for SAB+MTB, indicating that,
compared to temporal features, spatial features better reflect
the differences between normal and depressed individuals. The
accuracy (71.53%), recall (75.60%) and F1 score (73.51%) of
the DepMSTAT model were all higher than those of the three
experimental groups, indicating that the introduction of the TAB
and SAB modules could make the model performance more
stable and the ability to extract valid spatiotemporal features
with the ability to discriminate between depressed and normal
controls.

3) Order Between SAB and TAB: To verify the effect of the
stacking order of the TAB and SAB modules on the performance
of the model, we designed ablation experiments with the oppo-
site stacking order of these two modules as in DepMSTAT. As
shown in the last two rows of Table V, all evaluation metrics for
DepMSTAT are higher than those for this ablation experiment.
It is noteworthy that the evaluation metrics of both sets of
experimental results are basically more stable compared to the
results of the previous ablation experiments. This to some extent
indicates that the early fusion of the spatio-temporal character-
istics of the different data modalities is beneficial to the stability
of the model performance. In addition, the spatial information
in the DepMSTAT model is more conducive to the extraction of
discriminative features than the extraction of temporal features
first. Fig. 7 shows the classification confusion matrix for the
DepMSTAT model (Fig. 7(a)) and the model with the opposite
stacking order (Fig. 7(b)) on the test set, showing that both
models have more limited discriminative power for normal
individuals than for depressives. Overall, the DepMSTAT model
offers new ideas for real-world depression detection research.

Compared to the other baseline models, the DepMSTAT
model achieved the best performance with a precision of
71.53%, a recall of 75.60%, and an f1 score of 73.51%.
This is due to the ability of the DepMSTAT model to simul-
taneously perform spatial-temporal feature extraction and to
fuse information from different unimodalities, thus enabling
early feature fusion. In addition, the depression classifier used

Fig. 7. Normalized confusion matrices of the fusion methods. Each row of
the confusion matrices represents the true label and each column represents the
predicted label. The element (i, j) is the percentage of samples in class i that is
classified as class j.

Fig. 8. Visualization of fusion feature distribution. Each fusion feature uses
four different kernel PCA dimensionality reduction methods, and the kernel
functions are linear kernel, poly kernel, rbf kernel and sigmoid kernel respec-
tively. The triangle (purple) represents data from normal individuals, and the
circle (green) represents data from depressed individuals. The feature visuali-
sation after multimodal fusion is more compact in spatial distribution and has
better discriminability.
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employs a voting mechanism in order to avoid to some extent the
problem of classification uncertainty due to data quality issues.
The experimental results show that the proposed DepMSTAT
method is effective and can learn the differences between normal
subjects and depressed patients. In this work, we used visualised
multimodal spatio-temporal fusion features to illustrate the rep-
resentational learning capability of the model as shown in Fig. 8.

V. CONCLUSION AND FUTURE WORK

To analyse the accuracy of multimodal data for depression
detection in social scenarios, a depression detection framework,
DepMSTAT, is proposed in which the STAT module is able
to extract temporal and spatial features of the data and fuse
them effectively. Experimental results show that effective fusion
of spatio-temporal information from multimodal data and the
use of a classifier with a voting mechanism can better classify
depression. The method achieves better performance on the
latest social media based dataset D-Vlog with lower number
of parameters and faster computation speed. Based on the ex-
perimental results, we know that for the D-Vlog dataset, spatial
features are more important than temporal features for detecting
depression, but complementing each other can make the model
performance more stable. Overall, the method proposed in this
paper is objective and effective for the detection of depression. In
addition, the use of multimodal fusion to improve recognition
rates may provide some research ideas for future researchers.
However, studying the use of primary datasets and the fusion of
more modalities (facial expressions, speech, text, etc.) need to
be further addressed by designing and optimising the network
structure.

There are currently some issues that remain to be addressed
in this study; the D-Vlog dataset only provides facial landmarks
and processed speech data that has been processed to prevent
disclosure of personal privacy, which to some extent lacks the
original authenticity of the data. Therefore, the task of detecting
depression is made more real by examining raw data from real-
life scenarios. Simple data segmentation can result in redundant
and invalid data, which not only increases computation, but can
also interfere with the model’s learning of valid features. In the
future, it is necessary to design data segmentation with weights
to effectively extract key sequence segments for depression
detection.
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