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ABSTRACT Resting-state electroencephalography (EEG) studies have shown significant group differences
in functional connectivity networks between patients with depression and healthy controls. The present study
aims to identify the altered EEG resting-state functional connectivity patterns of depressed patients, which
can be used to test the feasibility of distinguishing individuals with depression from healthy controls. In the
present study, the phase lag index was employed to construct functional connectivity matrices. An altered
Kendall rank correlation coefficient was used to identify the features with high discriminative power, and
several classifiers were employed to classify a total of 27 depressed patients and 28 demographicallymatched
healthy volunteers. Permutation tests were used to evaluate classifier performance. The best classification
results demonstrate that more than 92% of subjects were correctly classified by binary linear SVM through
leave-one-out cross-validation for the full frequency band, and the AUC was 0.98. Our findings suggest that
the depression affects brain activity in nearly the whole cortex and that changes in brain oscillation patterns
in the delta, theta, and beta frequency bands are more significant than those in the alpha frequency band. The
current study sheds new light on the pathological mechanism of depression and suggests that EEG resting-
state functional connectivity analysis may identify potentially effective biomarkers for its clinical diagnosis.

INDEX TERMS Depression, EEG, functional connectivity, multivariate pattern analysis, resting-state.

I. INTRODUCTION
Depression is a common mental illness that already affects
more than 350 million people worldwide [1], and its main
characteristics are persistent, pervasive and serious depressed
mood or anhedonia. The patient has difficulty controlling his
mood, has a lowered mood and has decreased interest or plea-
sure in all activities [2]. The pathophysiology of depression
remains unclear. Furthermore, it is estimated by the World
Health Organization that depression will become the second
leading cause of illness by 2020 [3]. Depression is the main
cause of suicide, and up to 10% of people with depressive
episodes will commit suicide if untreated.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiachen Yang.

The human brain is a complex system comprising 100 bil-
lion (1011) neuron cells and approximately 100 trillion (1014)
synapses [4], which are organized by dynamic neural com-
munications and mutual interactions based on synchronous
oscillations among different brain regions [5]–[7]. In recent
years, a considerable body of literature has examined the
synchronous oscillation patterns that reflect the activity of
the brain and provide reliable markers of brain function or
dysfunction [8], [9]. Therefore, it is simple and effective to
explore brain activity via brain synchronous oscillatory pat-
terns. For example, Ritz and Sejnowski [10] described intrin-
sically bursting pyramidal cells and discovered inhibitory
interneurons that fire spike doublets to induce synchrony.

Current clinical diagnostic methods for depression have
many obvious disadvantages, which include patient denial,
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poor sensitivity, subjective bias and inaccuracy [11], [12].
Therefore, to exploit simple, accurate and operable methods
for depression detection or to find useful biomarkers for
depression is one of the most difficult challenges [12], [13].
At present, many imaging technologies are used to explore
and treat mental illness, such as epilepsy and depression,
including electroencephalography (EEG), functional mag-
netic resonance imaging (fMRI), magnetoencephalogram
(MEG) recording, positron emission tomography (PET), dif-
fusion tensor imaging (DTI), and single photon emission
computed tomography (SPECT). Among them, PET and
SPECT require injecting radioactive substances into the sub-
jects. EEG is a noninvasive and painless method of evalu-
ation of brain function which is often used in the auxiliary
diagnosis of illnesses such as depression, seizure, Alzheimer,
and schizophrenia [14], [15]. The advantages of EEG are
sensitivity, relatively low cost and convenience for recording
the activity of the brain. EEG synchronous oscillations are
rhythmic electrical events coming from the brain and can be
used to define the interaction between different brain regions.
Due to this peculiarity, it is suggested that the information
processing of the brain can be reflected in EEG oscillation
rhythms [16]. Based on this theory, many findings have been
presented on the study of depression [17]–[19]. For example,
some results demonstrated that patients with depression had
different oscillations in different frequency bands, such as
delta, theta, alpha [20], and beta bands [21], [22]. An EEG
oscillation study on patients with depression reported that
major depression affects brain activity in nearly the whole
cortex and manifests itself through considerable reorgani-
zation of the composition of brain oscillations in a broad
frequency range: 0.5–30 Hz [23].

In recent years, the results of research based on different
approaches, such as frontal EEG asymmetry [24], different
frequency bands [25], ‘‘small-world’’ network characteris-
tics [26], and increased/disrupted cognition connectivity net-
works [27], in patients with depression have been widely
presented. These research findings revealed different neuro-
physiological characteristics of depression [7]. These stud-
ies have also contributed many new methods for research
related to depression and provided new scientific support for
explaining the mechanism of depression. Nonetheless, the
scientific community still does not have a consensus on the
physiological mechanism of depression [2]. In view of this,
new methods and techniques and larger scale experiments for
exploring depression are expected.

More recently, functional connectivity was used to identify
the differences between patients with and without mental
illness and classify them through the distribution of those
differences[28]. Because fMRI technology has better spatial
resolution information than EEG, in some studies, functional
connectivity was constructed by fMRI data. For example,
Anderson et al. [29] determined functional connectivity by
fMRI and successfully distinguished patients with autism
from control subjects with a total accuracy of 79% by a leave-
one-out classifier. Liu et al. [30] classified patients with social

anxiety disorder from healthy controls using linear SVM and
whole brain functional connectivity, and the results showed
an 82.5% correct classification rate.

Furthermore, there are many studies using kinds of clas-
sification techniques and feature extraction methods based
on EEG signals and functional connectivity networks con-
structed by EEG signals to discriminate between depressed
patients and normal controls. For instance, Erguzel et al. [31]
optimized a classification by a combinate genetic algorithm
and a back-propagation neural network for classifying major
depressive disorder (MDD) and normal patients, and the
outcomes of his approach indicate the noticeably increased
overall accuracy of 89.12%. In the paper [32], a classifi-
cation accuracy of 90% is achieved by all nonlinear fea-
tures and a logistic regression classifier. Mumtaz et al. [33]
proposed a machine learning framework with synchroniza-
tion likelihood features to discriminate MDD patients and
normal controls; the most successful results indicated that
the classification accuracy was 98% using an SVM classi-
fier from 34 MDD patients and 30 healthy subjects. As a
data-driven technique, multivariate pattern analysis based
on whole brain EEG functional connection can comple-
ment univariate statistical analyses. In recent years, there
has been increasing interest in multivariate pattern analysis
methods to investigate changes in the brain using brain activ-
ity data from fMRI, EEG, MEG and other brain imaging
techniques [34]–[36].

In addition, several previous studies using EEG have
demonstrated that depression can affect the activity of the
resting state of the brain. Relevant researchers have indicated
the use of the resting-state for recognizing mild depres-
sion [37]–[40]. However, to date, it is unknown whether mul-
tivariate pattern analysis can capture whole brain EEG resting
functional connectivity patterns to discriminate depressed
patients from normal controls at the individual subject level
with a high degree of accuracy.

The purpose of this study was to explore significantly
altered EEG functional connectivity patterns and to dis-
criminate patients with depression from healthy subjects.
Altered EEG functional connections were expected to be
observed in resting state networks. Therefore, in this study,
we adopted a resting-state paradigm to collect EEG and dis-
criminate between patients with depression and normal con-
trols. The sensory data from EGI (electrical geodesics, Inc.,
USA) 128 channel devices were preprocessed withMATLAB
programs. In cleaned EEG data, we constructed phase lag
index (PLI) matrices for each subject. Then, the high discrim-
inative power features were extracted by the altered Kendall
rank correlation coefficient for several familiar classifiers,
including support vector machine (SVM) [41], decision tree
(DT), k-nearest neighbor (KNN) and naïve Bayes (NB) clas-
sifiers. To test the generalization ability of the classifier,
we performed a permutation test on the SVM classification’s
results. This study will be helpful in further understanding
the neural mechanisms underlying the behavioral symptoms
of depression, which may offer additional information for
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FIGURE 1. Flowchart for functional connectivity and multivariate pattern analysis.

advancing our understanding of the pathophysiology of the
disorder.

II. MATERIALS AND METHODS
The proposed procedure for the analysis of functional con-
nectivity and multivariate pattern analysis for depression
identification is summarized in Figure. 1.

A. SUBJECTS
Written informed consent was obtained before the experiment
began. The participants included 30 patients diagnosed with
MDD from the clinic at Lanzhou University Second Hospital
of China (Lanzhou, Gansu Province of China), and 30 similar
normal volunteers were recruited from the community. All
of the subjects were native Chinese speakers. MDD patients
were chosen according to their score on the PHQ-9 [42] and
GAD-7 [43], and confirmation of the diagnosis was made
by clinical psychiatrists. Exclusion criteria included any kind
of neurological disorder, serious head injury with loss of
consciousness, acute physical illness and presence of drug
or alcohol abuse. Similar exclusion criteria were adopted for
healthy control subjects. To ensure the effectiveness of this
study, the exclusion criteria were strictly enforced before

TABLE 1. Characteristics of the participants in this study.

the experiment. Three patients and two normal volunteers’
data were rejected from the sample due to the lack of some
basic information or to too much noise during EEG acquisi-
tion. Finally, 27 MDD and 28 healthy sex- and age-matched
subjects remained. Detailed statistical information is summa-
rized in Table 1.

B. DATA ACQUISITION AND PREPROCESSING
The resting state EEG data were recorded by the 128-channel
HydroCel Geodesic Sensor Net and Net Station software at
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a sampling rate of 250 Hz and referenced to the vertex (Cz
electrode), and electrode impedances were kept below 70 k�.
In the experiments, participants sat in a dimly lit and quiet
room and were asked to remain still with their eyes closed for
5 minutes. Then, the subjects were instructed to be comfort-
ably seated on a wooden chair, keep their eyes closed, relax,
remain awake and to perform no specific cognitive exercise
during the EEG recording. Simultaneously, they were also
required to reduce head and body movement and eye move-
ment to achieve a reduction in electromyography (EMG) and
electrooculography (EOG) noise, respectively [44].

The resting state EEG data were further processed offline
with the MATLAB EEGLAB1 toolbox and several plugins.
First, the EEG data were filtered (bandpass = 1–40 Hz)
using a Hamming windowed Sinc FIR filter [45]. Electrical
interference from the 50 Hz-line noise and the ‘‘baseline
drift’’ were removed by this filter. Second, the EEG data
were manually inspected, and nonbrain-related artifacts such
as muscle contractions and movement-related artifacts, also
called EMG, and eyemovements (EOG, electrooculography),
were removed by the TrimOutlier plugin.2 In this step, bad
channels and bad data points were repeatedly rejected by
threshold-set reference mean and SD values. Third, the loca-
tion of removed bad channels was interpolated using spheri-
cal interpolation. The interpolation method can complete the
recording of EEG, but this causes a rank deficiency. Fourth,
from the historical research, the use of the REST [46] re-
referencing approach is better than the average re-referencing
approach. Therefore, the REST re-reference was applied to
all of the EEGs. Fifth, after the above steps, the remaining
data points included some high-power content, and some
EEG epochs were removed by Artifact Subspace Reconstruc-
tion (ASR) plugin.3

Through the above steps, cleaned EEGdatawere produced.
For a better understanding of human brain activity, the EEG
signal waves were divided into four major sub-bands, which
were divided from low to high frequencies known as delta (δ,
range 1-4 Hz), theta (θ , range 4-8 Hz), alpha (α, 8-13 Hz), and
beta (β, 13–30 Hz) bands. The present study investigated the
whole frequency EEG band and four EEG sub-band signals.

C. PHASE LAG INDEX ANALYSIS AND CONSTRUCTION OF
THE FUNCTIONAL CONNECTIVITY MATRIX
Researchers have explored some methods of functional con-
nectivity for quantifying phase synchronization in multichan-
nel EEG, such as phase coherence (PC) [47] and imaginary
component of coherency (IC) [48] analysis. The PLI (Phase
Lag Index) [49] is used to obtain reliable estimates of phase
synchronization that are invariant against the presence of
common noise sources. With two given EEG signals x and
y considered, the PLI value is calculated by the following

1EEGLAB Wiki: https://sccn.ucsd.edu/wiki/EEGLAB
2TrimOutlier plugin: https://sccn.ucsd.edu/wiki/TrimOutlier
3Clean_rawdata (ASR): http://sccn.ucsd.edu/eeglab/plugins/ASR.pdf

equations, where k = 1 . . .N .

PLIxy =
∣∣〈sign [θx (tk)− θy (tk)]〉∣∣ (1)

The PLI value ranges between 0 and 1: 0 ≤ PLI ≤ 1, where
0 indicates either no coupling or coupling with a phase dif-
ference centered around 0 mod π , and 1 indicates completed
phase locking at a value of1θ (tk) = θx (tk)−θy (tk) different
from 0 mod π . In equation (1), denotes the absolute value
of X, and denotes the mean of Y vector. Where sign() is a
signum function, the result of sign [Z1 − Z2] denotes positive
or negative 1; if Z1 > Z2, the value is 1, otherwise, the value
is 0.

θx (tk) = arctan
x̃ (tk)
x (tk)

(2)

z (tk) = x (tk)+ ix̃ (tk) = A (tk) eiθ(tk ) (3)

In (1), θ (tk) denotes the instantaneous phase of the signal,
which can be computed by (2). The analytical signal z (tk)
is a complex-value, x (tk) a real-time series and x̃ (tk) its
corresponding Hilbert transform.

Through the above computational equations, we evaluated
functional connectivity between each pair of channels using
PLIxy. Thus, for each subject, we obtained a resting-state
functional connectivity captured by a 128 × 128 symmetric
matrices Cij:

Cij =


C11 C12 . . . C1n
C21 C22 C2n
...

. . .
...

Cn1 Cn2 . . . Cnn


128×128

(4)

In thismatrix, each row and column corresponds to a differ-
ent node, and thematrix element positioned at the intersection
of the ith and jth columns encodes information about the con-
nection between channels i and j. In this study, the subscripts
of C were used to index each element, the first subscript i
indexes rows and the second subscript j indexes columns.
Diagonal elementsCij(where i = j) of the connectivity matrix
with the black font in equation (4) are set to 1, and off-
diagonal elements Cij(where i 6= j) with red and blue font
are set to PLIxy value.

D. ALTERED KENDALL RANK CORRELATION COEFFICIENT
AND FEATURE DIMENSION REDUCTION
For each symmetric functional connectivity matrix, 128 diag-
onal elements were removed, and the upper triangle elements
of the connectivitymatrix were extracted as classification fea-
tures, i.e., the feature space for classification was constituted
by the 128×(128−1)/2 = 8128 dimensional feature vectors.

The abnormal functional connectivity patterns associated
with depression are mainly represented by the highly dis-
criminating functional connections, and 8128-dimensional
feature vectors including all the differences caused by lesion
and noise. Highly discriminatory features were selected from
the original 8128 features space, further reducing the num-
ber of features, accelerating computation and diminishing

VOLUME 7, 2019 92633



H. Peng et al.: Multivariate Pattern Analysis of EEG-Based Functional Connectivity

noise [50]. Therefore, the feature selection method was used
to reduce the dimension for classification through retaining
the most discriminative functional connections and elimi-
nating the remaining indistinctive features. The discrimina-
tive power of a feature can be quantitatively measured by
the importance of its degree of relevance to classification.
We adopt a kind of altered Kendall rank correlation coef-
ficient, commonly referred to as the Kendall’s tau coeffi-
cient [51], to measure the correlation of each connection with
the classification, which provides a distribution-free test of
independence between two variables.

If there are m subjects in the patient group and n subjects
in the normal control group, Xij denotes the ith functional
connectivity feature of the jth subject, and Yj denotes the class
label of a particular sample (+1 denotes a patient subject
and−1 denotes a normal control subject), the altered Kendall
rank correlation coefficient τi of the functional connectivity
feature can be defined as:

τi =
nc − nd
m× n

(5)

where nc is the number of concordant pairs and nd is the
number of discordant pairs. Because the relationship between
a pair of subjects that belong to the same group is not con-
sidered, the total number of subject pairs is m × n. For a
pair of two-observation data sets

{
Xij,Yj

}
and

{
Xij,Yk

}
, a

concordant pair is when

sign
(
Xij − Xik

)
= sign (Yi − Yk) (6)

Correspondingly, a discordant pair is when

sign
(
Xij − Xik

)
= −sign (Yi − Yk) (7)

From the above method, for τi, a positive value indicates
that the th functional connectivity increased in the patient
group compared to the normal control group, and a negative
value indicates that the i th functional connectivity decreased
in the patient group compared to the control group. The
discriminative power of a feature was defined as the absolute
value of the Kendall correlation coefficient |τi|. Then, the
features were ranked according to their discriminative power
from large to small, and a set of coefficients over a specified
threshold was selected as the final feature space for classifi-
cation.

E. CLASSIFICATION AND PERFORMANCE EVALUATION
When the dataset of features with high discriminative power
was obtained, binary support vector machine (SVM) with
a linear kernel function and a k-nearest neighbor (KNN)
with 1 neighbor, decision tree (DT) and naïve Bayes (NB)
classifiers were employed to solve the classification problem.
The results were reported with the default parameter setting.
For the support vector machine classifier, we adopted the
LIBSVM [41] program package, and the SVM type was
C-SVC. For the other classifiers, the main analysis programs
are from the Statistics and Machine Learning Toolbox in
MATLAB. Due to the limited number of samples, we used

a leave-one-out cross-validation strategy to estimate the gen-
eralization ability of our classifier. In the current study, the
performance measure of a classifier is quantified using the
sensitivity (true positive rate), specificity (false positive rate),
accuracy, receiver operating characteristic (ROC) curve and
area under the ROC curve (AUC) based on the result of cross-
validation. Note that the sensitivity represents the proportion
of patients correctly predicted, and the specificity represents
the proportion of normal controls correctly predicted.

F. STATISTICAL INFERENCE WITH PERMUTATION TESTS
Many frameworks for statistical tests for assessing
classification performance have been explored by researchers
[52], [53]. In this study, we chose the AUC as the statis-
tic to test the generalization ability GR of the classifier.
Permutation tests were employed to estimate the statistical
significance of the observed classification generalization
ability. In permutation testing, the class labels of the training
data were randomly permutated prior to training. Then, cross-
validation was performed on the permutated training set, and
the permutation was repeated 10000 times. Suppose that a
classifier learned reliably from the data when the general-
ization ability GA0 obtained by the classifier trained on the
real class labels exceeded the 95% confidence interval of the
classifier trained on randomly relabeled class labels. For any
value of the estimated GA0, the appropriate P-value P̂(GA0)
represented the probability of observing a classification pre-
diction rate no less than GA0. Then, the null hypothesis was
rejected because those classifiers could learn the relationship
between the data and the labels reliably and declare that the
classifier learned the relationship with a probability of being
wrong of at most P̂(GA0).

III. RESULTS AND DISCUSSION
A. FUNCTIONAL CONNECTIVITY MATRIX AND
LOCATION DISTRIBUTION
The number of connections between these channels is large;
for any network of N nodes, the number of possible con-
nections is in the order of N 2. Thus, we used a connectivity
matrix to represent the large dataset in a simple and meaning-
ful way. The connectivity matrix offers a compact description
of the pairwise connectivity between all nodes of a network
as a two-dimensional matrix. A PLI functional connectivity
matrix was calculated for each subject between all of the
electrodes on the scalp. As shown in Figure. 2, the PLI func-
tional connectivity matrices of both groups show complex
but similar patterns with various regions of high (redder)
and low (bluer) levels of synchronization. However, there
was no evident difference in the distribution of highlighted
areas between the groups. From the differencematrix (Figure.
2c) and compared with the normal control group, the patient
group with depression exhibited an increased degree of syn-
chronization in a small area, but in a large area, the patient
group exhibited a reduced degree of synchronization from
the difference matrix (Figure. 2d). In general, there are fewer
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FIGURE 2. Weighed phase lag index functional connectivity network measured with the whole frequency band EEG.
(a) Mean functional connectivity matrices for the depressive patient group (N = 27). (b) Mean functional connectivity for
normal control subject group (N = 28). (c) and (d) indicates the difference matrix of patient group and normal control
group, (c) Patient group > Control group, (d) Control group < Patient group. In the matrix map, the horizontal and
vertical axes denoted 128 channels, and each chromatic point represented the PLI value of two corresponding channels.
Note, other bands information is in the Appendix.

connections for the patient group than the normal control
group, but the strength is large. There are more connections
in the normal control group than in the patient group, but the
strength is smaller.

To explore the location distribution of the differencematrix
of the scalp, we plotted the difference matrix in a 3D graph
according to the location of the channels, as shown in Figure.
3. For the full frequency band, with a threshold of 0.05,
most of the areas with increased connection density were
distributed in the left frontal, temporal, and parietal lobes and
in the right occipital lobe. Most of the areas with decreased
connection densities were distributed in the right frontal
lobe. In the delta band, we found that increased connection
densities were mainly located in the left temporal lobe, and
decreased connection densities were spread across the whole
brain. From a physiological point of view, delta frequency
waves mainly appear in the adult sleeping state and are spread
widely [2]. In the theta band, most of the areas of increased
connection density were distributed in the right occipital lobe,
and most of the areas with decreased connection density were

distributed in the left frontal lobe. In the alpha band, most of
the areas with increased connection density were distributed
in the left frontal lobe, and most of the areas with decreased
connection density were distributed in the left parietal lobe.
In the beta band, most of the areas with increased connection
density were distributed in the left parietal lobe, and most of
the areas with decreased connection density were distributed
in the left frontal and temporal lobe. Most of the previous lit-
erature has revealed an increase in functional connectivity in
different frequency bands for patients with depression in the
resting state. For example, Leuchter et al. examined resting-
state functional connectivity in different frequency bands and
found that MDD subjects expressed higher theta and alpha
coherence in longer distance connections between frontopo-
lar and temporal or parietooccipital regions and higher beta
coherence primarily in the dorsolateral prefrontal cortical
or temporal regions [38]. Many fMRI studies have found
that brain networks have increased connectivity in different
brain regions in depression patients [54]–[56]. Similarly, for
EEG research, several studies have reported that there was
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FIGURE 3. The location distribution of the difference matrix in five frequency bands. (a) the increased connections for patients with
depressive. (b) the decreased connections for the patient.

an abnormal power spectrum, asymmetry, and coherence in
some frequencies [57]. However, some studies also discov-
ered decreased brain functional connections [58], [59]. Many
improvements have been made, but due to the use of different
methods and data, there are differing results. We hypothesize
that the EEG synchronization pattern of the entire brain has
changed in each band, but the degree of change is different.
In the future, more research is needed to explore the relevant
changes. The results of the PLI functional connectivity analy-
sis and the location distribution showed that the patients with
depression had significantly higher synchronization in the left
hemisphere of the brain, especially in the frontal, temporal
and parietal lobes and in the occipital lobe of the right hemi-
sphere, and lower synchronization in the right hemisphere of
the brain, especially in the frontal lobe, compared with the
normal control group in the full wave band.

B. CLASSIFICATION RESULTS
Because different classifiers yield different results for the
same feature set, we used a different feature set for the differ-
ent classifiers. In this study, we used 4 kinds of classifiers and
recorded the best result for each classifier. Because the main
purpose of this study is to explore the altered connections in
different frequency bands and brain regions of patients with
depression, these classification methods were also applied
to the delta, theta, alpha, and full bands. We recorded each
result of the different classifiers and different frequency
bands using leave-one-out cross-validation. The performance
results are shown in Table 2. Table 2 shows that the binary
linear support vector machine classifier achieved an accuracy
of 92.73% (area under the ROC curve is 0.98, < 0.0001) in
the full frequency wave band. For each individual frequency
band, the best classification is also SVM; in addition, the

classification accuracies of the full, delta and theta bands are
better than the alpha and beta bands. Therefore, we suggest
that there exists a significant between-group difference in the
full, delta and theta bands that could be used for classification.
From Table 2, we can see that the decision tree and naive
Bayes classifiers yielded the same classification accuracies
and ROCs as seen in Figure. 4b.

Previous studies have indicated significant differences
between depression patients and normal controls in the theta
band [7] and alpha band [7], [60]. However, there is not a
definitive result, and there are still many controversies. In this
study, our results show that depression patients and normal
subjects can be distinguished by the variation of functional
connections at different frequency bands. This change not
only occurs in the alpha and theta bands but also in the
entire frequency band. Because different thresholds will lead
to different numbers of features, there are different results
with a different threshold level for the same classifier, and the
accuracy of the four classification methods based on different
thresholds is shown in Figure. 4a.

From Table 2, the SVM classifier achieves the best classi-
fication results for the entire frequency band of EEGs, and
overfitting did not occur. For other classifiers, the default
parameters are used. For the same feature space, the classi-
fication effect is not as successful as the SVM classifier. Due
to the variation in sensitivity to the number of features for
each classifier, performance differences cannot be avoided.

From the classification results, we found that the SVM
approach is the best classification method for different fre-
quency bands. To verify the correctness and generalization
ability of the SVM classifier, we performed a permutation
test with the AUC as the test statistic, and the permutation
was repeated 10000 times. The permutation distribution of
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TABLE 2. classification results of four classifiers on the different frequency band.

FIGURE 4. (a) The changes in the accuracies of four classifiers as a function of threshold and (b) ROC curves of depression
patients for four classifiers based on functional connectivity.

FIGURE 5. The permutation distribution of the estimate using the binary
linear support vector machine classifier (repetition times = 10000) when
retaining the 249 most discriminating power features: x and y labels
represent the generalization ability (AUC∗100) and frequency,
respectively. GA0 is the generalization ability obtained by the classifier
trained on the real class labels.

the estimate is shown in Figure. 5, indicating that the SVM
classifier learned the relationship between the data and the
labels with a probability of being wrong of < 0.0001.

C. ALTERED FUNCTIONAL CONNECTIVITY
Informed by the above classification results, we extracted fea-
tures with high discriminative power from each connection.
The discriminative power of each connection was quantified
by the altered Kendall rank correlation coefficient for clas-
sification. To choose the best threshold to achieve the best
classification effect, we performed statistics on the number
of features under different thresholds, as shown in Figure. 6.
In one extreme case (threshold < 0.2), all connections were

FIGURE 6. The distribution of the characteristics of different frequency
band data as a function of the altered Kendall rank correlation coefficient.

considered major features for classification. In the other
extreme case (threshold > 0.5), there were only a few con-
nections selected as features. In these cases, most of the
classifiers did not perform well. In different frequency bands,
the discriminative power of the number of features had a trend
similar to the threshold changes. Since we used a leave-one-
out cross-validation strategy to estimate the generalization
ability of the classifiers (see below) and feature ranking is
based on a slightly different training dataset in each iteration
of the cross-validation, the final feature set differed slightly
for each iteration. In this study, we assessed each classifier
performance at the different thresholds, and we selected a
distribution of discriminative power features that had the best
classification performance using a binary SVM classifier,
as shown in Figure. 7. The electrodes related to consensus
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FIGURE 7. The distribution of high discriminative power of resting-state functional connectivity assessed with EEG for the patient group
with depression and the normal control group. (left) A circular projection of the difference in functional connectivity in the best SVM
classification performance for a different frequency. The red edges linking different channels indicate consensus connections from
patients with depression, and the blue edges indicate consensus connections from the normal control group. (right) The location of
electrodes with high discriminative connections; the size of a node indicates the degree fraction of node. The color of nodes does not
represent any characteristic.

functional connectivity for patients with depression are pri-
marily located in the left frontal lobe and parietal lobe in the
whole frequency band, as shown in Figure. 7. Therefore, our
results suggest that functional connectivity between the left
frontal lobe and parietal lobewas altered in depressed patients
as well. For the delta and theta frequency band, we found that
the number of important nodes was smaller and the distri-
bution was sparser than those of the other bands. For high-
frequency bands such as alpha and beta bands, the number of
important nodes was more densely distributed.

In a previous study, Zeng et al. [61] attempted to distin-
guish depressed patients from healthy controls using machine
learning methods and fMRI data, and they not only achieved
an individual-level classification consistency of 92.5% but
also revealed that the subgenual cingulate functional con-
nectivity network may play a critical role in patients with
depression. In this study, we found that this machine learning

approach can be used not only for fMRI data through com-
putational analysis but also for the analysis of functional
connectivity based on EEG.

With respect to theta activity, previous studies suggested
that altered theta activity may explain disrupted functional
connectivity in frontal-cingulate pathwaysmediating emotive
regulation in patients with depression [62], [63]. Because this
study is limited to the scalp over the brain, the location of
altered theta oscillation patterns could not be observed. For
the alpha oscillations, the number and strength of the short-
range anterior and posterior functional connections were
proportional to MDD severity [60]. Based on the current
findings, we suggest that global short-range functional con-
nections within alpha and beta oscillations seem to play an
important role in the pathogenesis of MDD and its severity.
Fingelkurts et al. [23] found that major depression affects
brain activity in nearly the whole cortex and manifests itself

92638 VOLUME 7, 2019



H. Peng et al.: Multivariate Pattern Analysis of EEG-Based Functional Connectivity

FIGURE 8. Weighed phase lag index functional connectivity network measured with the Delta, Theta, Alpha and Beta frequency bands EEG.
(a) Mean functional connectivity matrices for the depressive patient group (N = 27). (b) Mean functional connectivity for normal control subject
group (N = 28). (c) and (d) indicates the difference matrix of patient group and normal control group, (c) Patient group > Control group, (d) Control
group < Patient group. In the matrix map, the horizontal and vertical axes denoted 128 channels, and each chromatic point represented the PLI
value of two corresponding channels.

as a considerable reorganization of the composition of brain
oscillations in a broad frequency range (0.5-30 Hz) and that
the magnitude of the effect of depression was maximal in the
left anterior and posterior cortex of the brain. From the results
of the current study, we assert that depression affects brain
activity in nearly the whole cortex, and in the low-frequency
EEG bands such as delta and theta, the difference is mainly
manifested in the occipital region and the left prefrontal lobe.
This has more overlap with the brain regions involved in
the current default mode network in the fMRI field. At the
same time, this difference distribution also shows the pre-
frontal asymmetry, the difference is mainly located in the left
prefrontal.

IV. CONCLUSIONS AND FUTURE WORK
In conclusion, in this study collected and analyzed EEG data
for the resting state of 55 subjects. To provide a more efficient
method for detecting mildly depressed patients, we employed
an altered Kendall ranked correlation coefficient and four
classification algorithms. It was found that the binary linear

SVM classifier had best performance and that compared to
the sub-band, the full band was abnormally changed, with a
classification accuracy above 92% and an AUC above 0.98.
The combination of a linear SVM and the full frequency band
was considered to be more efficient, more accurate and more
robust to discriminate patients with depression and normal
controls. We also analyzed the discriminative feature set dis-
tribution across the brain regions, and the results indicated
that the left hemisphere and right hemisphere have many dif-
ferences, especially the left frontal and whole parietal lobes.
Finally, we suggest that depression affects EEG resting-state
brain activity in a broad frequency range (1–40 Hz) rather
than in only the theta band or in the other frequency bands.
At the same time, the degree of the effect of depression was
maximal in the left anterior and posterior cortex of the brain.

The spatial distribution of differences from functional con-
nectivity matrices and of high discriminative power connec-
tions is not exactly the same. This discrepancy may be caused
by the different analysis methods. However, the distribu-
tion differences caused by the PLI functional connectivity
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TABLE 3. The parameter settings of classifiers, the default parameter settings were used as the table in the article.

matrices did not show statistically significant differences.
Additionally, the identification of discriminative features by
the altered Kendall rank correlation coefficient provides a
new solution for examining the different characteristics of the
EEG functional network. Although the classification results
of this study using resting-state PLI functional connectiv-
ity are encouraging, there are still limitations related to the
sample size, which was relatively small, and the lack of a
large independent dataset to test our methods and confirm
the findings. To continue our research, in the future, we will
recruit more subjects to improve the validity of the results and
to classify a range depressed states, such as mild depression.
The aim of functional neuroimaging is to understand the
functional organization of the brain, such as the location
of processing areas, the time course or dynamics of their
activities, and the nature of their interactions. Moreover, this
study is only effective on the scalp, and it lacks more spatial
information. In the future, we will investigate the EEG source
location on the scalp (also called the inverse problem) and try
to use source localization technology [64], [65] to study the
changes in the brain of a patient with depression. It is hoped
that these findings andmethods may have the generalizability
to provide an effective approach for the auxiliary diagnosis
of depression and to help depressed patients take precautions
early.

APPENDIX
See Figure. 8 and Table 3.

REFERENCES
[1] K. Smith, ‘‘Mental health: A world of depression,’’ Nature, vol. 515,

no. 7526, p. 180, Nov. 2014.
[2] M. Baer, B. W. Connors, and M. A. Paradiso, Neuroscience: Exploring the

Brain. Philadelphia, PA, USA: Lippincot, Williams and Wilkins, 2007.
[3] C. J. Murray and A. D. Lopez, ‘‘Evidence-based health policy–lessons

from the global burden of disease study,’’ Science, vol. 274, no. 5288,
pp. 740–743, Nov. 1996.

[4] A. Fornito, A. Zalesky, and E. Bullmore, Fundamentals of Brain Network
Analysis. New York, NY, USA: Academic, 2016.

[5] O. Sporns, ‘‘The human connectome: A complex network,’’ Ann. New York
Acad. Sci., vol. 1224, no. 1, pp. 109–125, Apr. 2011.

[6] B. Güntekin and E. Başar, ‘‘A review of brain oscillations in perception of
faces and emotional pictures,’’Neuropsychologia, vol. 58, no. 1, pp. 33–51,
May 2014.

[7] X. Li, Z. Jing, B. Hu, J. Zhu, N. Zhong, M. Li, Z. Ding, J. Yang, L. Zhang,
L. Feng, and D. Majoe, ‘‘A resting-state brain functional network study
in MDD based on minimum spanning tree analysis and the hierarchical
clustering,’’ Complexity, vol. 2017, Jun. 2017, Art. no. 9514369.

[8] R. W. Thatcher and J. F. Lubar, ‘‘History of the scientific standards of
QEEG normative databases,’’ in Introduction to Quantitative EEG and
Neurofeedback: Advanced Theory and Applications, T. Budzinsky, H.
Budzinski, J. Evans, and A. Abarbanel, Eds. San Diego, CA, USA: Aca-
demic Press, 2008.

[9] J. R. Hughes and E. R. John, ‘‘Conventional and quantitative electroen-
cephalography in psychiatry,’’ J. Neuropsychiatry Clin. Neurosci., vol. 11,
pp. 190–208, May 1999.

[10] R. Ritz and T. J. Sejnowski, ‘‘Synchronous oscillatory activity in sensory
systems: New vistas on mechanisms,’’ Current Opinion Neurobiol., vol. 7,
no. 4, pp. 536–546, Aug. 1997.

[11] M. Sung, C. Marci, and A. Pentland, ‘‘Objective physiological and behav-
ioral measures for identifying and tracking depression state in clini-
cally depressed patients,’’ MIT Media Lab, Cambridge, MA, USA, Tech.
Rep. 595, 2005.

[12] X. Li, B. Hu, S. Sun, and H. Cai, ‘‘EEG-based mild depressive detection
using feature selection methods and classifiers,’’ Comput. Methods Pro-
grams Biomed., vol. 136, pp. 61–151, Nov. 2016.

[13] H. Cai, J. Han Y. Chen, X. Sha, Z. Wang, B. Hu, J. Yang, L. Feng,
Z. Ding, Y. Chen, and J. Gutknecht, ‘‘A pervasive approach to EEG-based
depression detection,’’ Complexity, vol. 2018, Jan. 2018, Art. no. 5238028.

[14] P. Giannakopoulos, P. Missonnier, G. Gold, and A. Michon, ‘‘Electrophys-
iological markers of rapid cognitive decline in mild cognitive impairment,’’
inDementia in Clinical Practice, vol. 24. Basel, Switzerland: Karger, 2009,
pp. 39–46.

[15] W. Zheng, Z. Yao, Y. Xie, J. Fan, and B. Hu, ‘‘Identification of alzheimer’s
disease and mild cognitive impairment using networks constructed based
on multiple morphological brain features,’’ Biol. Psychiatry, Cognit. Neu-
rosci. Neuroimag., vol. 3, no. 10, pp. 887–897, Oct. 2018.

[16] F. L. Da Silva, ‘‘The generation of electric and magnetic signals of the
brain by local networks,’’ in Comprehensive Human Physiology. Berlin,
Germany: Springer, 1996, pp. 509–531.

[17] C. J. Stam, J. Pijn, P. Suffczynski, and F. L. Da Silva, ‘‘Dynamics of the
human alpha rhythm: Evidence for non-linearity?’’ Clin. Neurophysiol.,
vol. 110, no. 10, pp. 1801–1813, Oct. 1999.

[18] C. J. Stam, ‘‘Brain dynamics in theta and alpha frequency bands and
working memory performance in humans,’’Neurosci. Lett., vol. 286, no. 2,
pp. 115–118, Jun. 2000.

[19] A. A. Fingelkurts, A. A. Fingelkurts, S. Bagnato, C. Boccagni, and
G. Galardi, ‘‘EEG oscillatory states as neuro-phenomenology of con-
sciousness as revealed from patients in vegetative and minimally conscious
states,’’ Consciousness Cognition, vol. 21, no. 1, pp. 149–169, Mar. 2012.

[20] N. Jaworska, P. Blier, W. Fusee, and V. Knott, ‘‘Alpha power, alpha
asymmetry and anterior cingulate cortex activity in depressed males and
females,’’ J. Psychiatric Res., vol. 46, no. 11, pp. 1483–1491, Nov. 2012.

[21] V. Knott, C. Mahoney, S. Kennedy, and K. Evans, ‘‘EEG power, fre-
quency, asymmetry and coherence in male depression,’’ Psychiatry Res.,
Neuroimag., vol. 106, no. 2, pp. 123–140, Apr. 2001.

[22] C. Nyström,M.Matousek, and T. Hällström, ‘‘Relationships between EEG
and clinical characteristics in major depressive disorder,’’ Acta Psychi-
atrica Scandinavica, vol. 73, no. 4, pp. 390–394, Apr. 1986.

[23] A. A. Fingelkurts, A. A. Fingelkurts, H. Rytsälä,
K. Suominen, E. Isometsä, and S. Kähkönen, ‘‘Composition of brain
oscillations in ongoing EEG during major depression disorder,’’ Neurosci.
Res., vol. 56, no. 2, pp. 44–133, Oct. 2006.

[24] J. J. B. Allen and S. J. Reznik, ‘‘Frontal EEG asymmetry as a promising
marker of depression vulnerability: Summary and methodological consid-
erations,’’ Current Opinion Psychol., vol. 4, pp. 93–97, Aug. 2015.

[25] Y. Li, D. Cao, L. Wei, Y. Tang, and J. Wang, ‘‘Abnormal functional
connectivity of EEG gamma band in patients with depression during
emotional face processing,’’ Clin. Neurophysiol., vol. 126, pp. 2078–2089,
Nov. 2015.

[26] F. Sambataro, N. D. Wolf, M. Pennuto, N. Vasic, and R. C. Wolf,
‘‘Revisiting default mode network function in major depression: Evidence
for disrupted subsystem connectivity,’’ Psychol. Med., vol. 44, no. 10,
pp. 2041–2051, Jul. 2014.

92640 VOLUME 7, 2019



H. Peng et al.: Multivariate Pattern Analysis of EEG-Based Functional Connectivity

[27] T. Shen, C. Li, B. Wang, W. M. Yang, C. Zhang, Z. Wu, M. H. Qiu,
J. Liu, Y. F. Xu, and D. H. Peng, ‘‘Increased cognition connectivity net-
work in major depression disorder: A FMRI study,’’ Psychiatry Invest.,
vol. 12, no. 2, pp. 227–234, Apr. 2015.

[28] X. Zhang, B. Hu, X. Ma, and L. Xu, ‘‘Resting-state whole-brain
functional connectivity networks for MCI classification using L2-
regularized logistic regression,’’ IEEE Trans. Nanobiosci., vol. 14, no. 2,
pp. 237–247, Mar. 2015.

[29] J. S. Anderson, J. A. Nielsen, A. L. Froehlich, M. B. DuBray, T. J. Druzgal,
A. N. Cariello, J. R. Cooperrider, B. A. Zielinski, C. Ravichandran,
P. T. Fletcher, A. L. Alexander, E. D. Bigler, N. Lange, and J. E. Lainhart,
‘‘Functional connectivity magnetic resonance imaging classification of
autism,’’ Brain, vol. 134, no. 12, pp. 3742–3754, Dec. 2011.

[30] F. Liu, W. Guo, J.-P. Fouche, Y. Wang, W. Wang, J. Ding, L. Zeng, C. Qiu,
Q. Gong, W. Zhang, and H. Chen, ‘‘Multivariate classification of social
anxiety disorder using whole brain functional connectivity,’’ Brain Struct.
Function, vol. 220, no. 1, pp. 101–115, Jan. 2015.

[31] T. T. Erguzel, S. Ozekes, O. Tan, and S. Gultekin, ‘‘Feature selection
and classification of electroencephalographic signals: An artificial neural
network and genetic algorithm based approach,’’ Clin. EEG Neurosci.,
vol. 46, no. 4, pp. 321–326, Oct. 2015.

[32] B. Hosseinifard, M. H. Moradi, and R. Rostami, ‘‘Classifying depression
patients and normal subjects using machine learning techniques and non-
linear features from EEG signal,’’ Comput. Methods Programs Biomed.,
vol. 109, no. 3, pp. 339–345, Mar. 2013.

[33] W. Mumtaz, S. S. A. Ali, M. A. M. Yasin, and A. S. Malik, ‘‘A machine
learning framework involving EEG-based functional connectivity to diag-
nose major depressive disorder (MDD),’’Med. Biol. Eng. Comput., vol. 56,
pp. 233–246, Feb. 2018.

[34] E. Schulz, A. Zherdin, L. Tiemann, C. Plant, and M. Ploner, ‘‘Decoding
an individual’s sensitivity to pain from the multivariate analysis of EEG
data,’’ Cerebral Cortex, vol. 22, no. 5, pp. 1118–1123, May 2011.

[35] N. U. F. Dosenbach, B. Nardos, A. L. Cohen, D. A. Fair,
J. D. Power, J. A. Church, S. M. Nelson, G. S. Wig, A. C. Vogel,
C. N. Lessov-Schlaggar, K. A. Barnes, J. W. Dubis, E. Feczko, R. S.
Coalson, J. R. Pruett Jr., D. M. Barch, S. E. Petersen, and B. L. Schlaggar,
‘‘Prediction of individual brain maturity using fMRI,’’ Science, vol. 329,
no. 5997, pp. 1358–1361, 2010.

[36] J. M. Garcia, J. R. Sirard, R. Larsen, M. Bruening, M. Wall, and
D. Neumark-Sztainer, ‘‘Social and psychological factors associated with
adolescent physical activity,’’ J. Phys. Activity Health, vol. 13, no. 9,
pp. 957–963, 2016.

[37] A. Kemp, K. Griffiths, K. L. Felmingham, S. A. Shankman,
W. Drinkenburg, M. Arns, C. R. Clark, and R. A. Bryant, ‘‘Disorder
specificity despite comorbidity: Resting EEG alpha asymmetry in major
depressive disorder and post-traumatic stress disorder,’’ Biol. Psychol.,
vol. 85, no. 2, pp. 350–354, 2010.

[38] A. F. Leuchter, I. A. Cook, A. M. Hunter, C. Cai, and S. Horvath,
‘‘Resting-state quantitative electroencephalography reveals increased neu-
rophysiologic connectivity in depression,’’ PLoS ONE, vol. 7, no. 2, 2012,
Art. no. e32508.

[39] J. Lee, J. Y. Hwang, S. M. Park, H. Y. Jung, S.-W. Choi, D. J. Kim,
J.-Y. Lee, and J.-S. Choi, ‘‘Differential resting-state EEG patterns asso-
ciated with comorbid depression in Internet addiction,’’ Prog. Neuro-
Psychopharmacology Biol. Psychiatry, vol. 50, pp. 21–26, Apr. 2014.

[40] Y. Noda, R. Zomorrodi, T. Saeki, T. K. Rajji, D. M. Blumberger,
Z. J. Daskalakis, and M. Nakamura, ‘‘Resting-state EEG gamma power
and theta-gamma coupling enhancement following high-frequency left
dorsolateral prefrontal rTMS in patients with depression,’’ Clin. Neuro-
physiol., vol. 128, no. 3, pp. 424–432, Mar. 2017.

[41] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vector
machines,’’ACMTrans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, Apr. 2011.

[42] K. Kroenke and R. L. Spitzer, ‘‘The PHQ-9: A new depression diagnostic
and severity measure,’’ Psychiatric Ann., vol. 32, no. 9, pp. 509–515,
Sep. 2002.

[43] R. L. Spitzer, K. Kroenke, J. B. Williams, and B. Löwe, ‘‘A brief measure
for assessing generalized anxiety disorder: The GAD-7,’’ Arch. Internal
Med., vol. 166, no. 10, pp. 1092–1097, May 2006.

[44] T. Walczak and S. Chokroverty, ‘‘Electroencephalography, electromyogra-
phy and electrooculography: General principles and basic technology,’’ in
Sleep Disorders Medicine. Amsterdam, The Netherlands: Elsevier, 1994,
pp. 95–117.

[45] A. Widmann, E. Schröger, and B. Maess, ‘‘Digital filter design for electro-
physiological data—Apractical approach,’’ J. Neurosci. Methods, vol. 250,
pp. 34–46, Jul. 2015.

[46] D. Yao, ‘‘A method to standardize a reference of scalp EEG record-
ings to a point at infinity,’’ Physiological Meas., vol. 22, no. 4, p. 693,
Oct. 2001.

[47] F. Mormann, K. Lehnertz, P. David, and C. E. Elger, ‘‘Mean phase coher-
ence as a measure for phase synchronization and its application to the EEG
of epilepsy patients,’’ Phys. D, Nonlinear Phenomena, vol. 144, nos. 3–4,
pp. 358–369, Oct. 2000.

[48] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett,
‘‘Identifying true brain interaction from EEG data using the imaginary
part of coherency,’’ Clin. Neurophysiol., vol. 115, no. 10, pp. 2292–2307,
Oct. 2004.

[49] C. J. Stam, G. Nolte, and A. Daffertshofer, ‘‘Phase lag index: Assessment
of functional connectivity from multi channel EEG and MEG with dimin-
ished bias from common sources,’’ Hum. Brain Mapping, vol. 28, no. 11,
pp. 1178–1193, Nov. 2007.

[50] L. L. Zeng, H. Shen, L. Liu, L. Wang, B. Li, P. Fang, Z. Zhou, Y. Li, and
D. Hu, ‘‘Identifying major depression using whole-brain functional con-
nectivity: Amultivariate pattern analysis,’’Brain, vol. 135, pp. 1498–1507,
May 2012.

[51] M. Kendall and J. Gibbons, Rank Correlation Methods. New York, NY,
USA: Oxford Univ. Press, 1990.

[52] M. Ojala and G. C. Garriga, ‘‘Permutation tests for studying clas-
sifier performance,’’ J. Mach. Learn. Res., vol. 11, pp. 1833–1863,
Jun. 2010.

[53] S. Mukherjee, P. Golland, and D. Panchenko, ‘‘Permutation tests for classi-
fication,’’ AI Memo 2003–019, Massachusetts Inst. Technol. Comput. Sci.
Artif. Intell. Lab., Cambridge, MA, USA, 2003.

[54] Y. I. Sheline, J. L. Price, Z. Yan, and M. A. Mintun, ‘‘Resting-state
functional MRI in depression unmasks increased connectivity between
networks via the dorsal nexus,’’ Proc. Nat. Acad. Sci. USA, vol. 107, no. 24,
pp. 11020–11025, 2010.

[55] M. D. Greicius, B. H. Flores, V. Menon, G. H. Glover, H. B. Solvason,
H. Kenna, A. L. Reiss, andA. F. Schatzberg, ‘‘Resting-state functional con-
nectivity in major depression: Abnormally increased contributions from
subgenual cingulate cortex and thalamus,’’ Biol. Psychiatry, vol. 62, no. 5,
pp. 429–437, Sep. 2007.

[56] K. D. Young, G. J. Siegle, M. Misaki, V. Zotev, R. Phillips, W. C. Drevets,
and J. Bodurka, ‘‘Altered task-based and resting-state amygdala functional
connectivity following real-time fMRI amygdala neurofeedback training
in major depressive disorder,’’ NeuroImage, Clin., vol. 17, pp. 691–703,
Dec. 2018.

[57] C. Tas, M. Cebi, O. Tan, G. Hızlı-Sayar, N. Tarhan, and E. C. Brown,
‘‘EEG power, cordance and coherence differences between unipolar
and bipolar depression,’’ J. Affect. Disorders, vol. 172, pp. 184–190,
Feb. 2015.

[58] C. G. Connolly, J. Wu, T. C. Ho, F. Hoeft, O. Wolkowitz, S. Eisendrath,
G. Frank, R. Hendren, J. E. Max, M. P. Paulus, S. F. Tapert, D. Banerjee,
A. N. Simmons, and T. T. Yang, ‘‘Resting-state functional connectivity
of subgenual anterior cingulate cortex in depressed adolescents,’’ Biol.
Psychiatry, vol. 74, no. 12, pp. 898–907, Dec. 2013.

[59] E. Alalade, K. Denny, G. Potter, D. Steffens, and L. Wang, ‘‘Altered
cerebellar-cerebral functional connectivity in geriatric depression,’’ PloS
ONE, vol. 6, no. 5, 2011, Art. no. e20035.

[60] A. A. Fingelkurts, A. A. Fingelkurts, H. Rytsälä, K. Suominen,
E. Isometsä, and S. Kähkönen, ‘‘Impaired functional connectivity at EEG
alpha and theta frequency bands in major depression,’’ Hum. Brain Map-
ping, vol. 28, no. 3, pp. 247–261, 2007.

[61] L. L. Zeng, H. Shen, L. Liu, and D. Hu, ‘‘Unsupervised classification
of major depression using functional connectivity MRI,’’ Hum. Brain
Mapping, vol. 35, no. 4, pp. 1630–1641, Apr. 2014.

[62] D. A. Pizzagalli, T. R. Oakes, and R. J. Davidson, ‘‘Coupling of theta activ-
ity and glucose metabolism in the human rostral anterior cingulate cortex:
An EEG/PET study of normal and depressed subjects,’’ Psychophysiology,
vol. 40, no. 6, pp. 939–949, Nov. 2003.

[63] C. Mulert, G. Juckel, M. Brunnmeier, S. Karch, G. Leicht, R. Mergl,
H. J. Möller, U. Hegerl, and O. Pogarell, ‘‘Rostral anterior cingulate cortex
activity in the theta band predicts response to antidepressive medication,’’
Clin. EEG Neurosci., vol. 38, no. 2, pp. 78–81, Apr. 2007.

[64] J. C. Mosher and R. M. Leahy, ‘‘Recursive Music: A framework for EEG
and MEG source localization,’’ IEEE Trans. Biomed. Eng., vol. 45, no. 11,
pp. 1342–1354, Nov. 1998.

[65] R. D. Pascual-Marqui, ‘‘Standardized low-resolution brain electromag-
netic tomography (sLORETA): Technical details,’’ Methods Find Exp.
Clin. Pharmacol., vol. 24, pp. 5–12, Jan. 2002.

VOLUME 7, 2019 92641


	INTRODUCTION
	MATERIALS AND METHODS
	SUBJECTS
	DATA ACQUISITION AND PREPROCESSING
	PHASE LAG INDEX ANALYSIS AND CONSTRUCTION OF THE FUNCTIONAL CONNECTIVITY MATRIX
	ALTERED KENDALL RANK CORRELATION COEFFICIENT AND FEATURE DIMENSION REDUCTION
	CLASSIFICATION AND PERFORMANCE EVALUATION
	STATISTICAL INFERENCE WITH PERMUTATION TESTS

	RESULTS AND DISCUSSION
	FUNCTIONAL CONNECTIVITY MATRIX AND LOCATION DISTRIBUTION
	CLASSIFICATION RESULTS
	ALTERED FUNCTIONAL CONNECTIVITY

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

