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Trial Selection Tensor Canonical Correlation Analysis (TSTCCA) for
Depression Recognition with Facial Expression and Pupil Diameter

Minqiang Yang, Yushan Wu, Yongfeng Tao, Xiping Hu∗, and Bin Hu∗

Abstract— Facial expressions have been widely used for depres-
sion recognition because it is intuitive and convenient to access.
Pupil diameter contains rich emotional information that is already
reflected in facial video streams. However, the spatiotemporal
correlation between pupillary changes and facial behavior changes
induced by emotional stimuli has not been explored in existing
studies. This paper presents a novel multimodal fusion algorithm
- Trial Selection Tensor Canonical Correlation Analysis (TSTCCA)
to optimize the feature space and build a more robust depression
recognition model, which innovatively combines the spatiotempo-
ral relevance and complementarity between facial expression and
pupil diameter features. TSTCCA explores the interaction between
trials and obtains an effective fusion representation of two modali-
ties from a trial subset related to depression. The experimental re-
sults show that TSTCCA achieves the highest accuracy of 78.81%
with the subset of 25 trials.

Index Terms— Depression recognition, Multimodal fu-
sion, Facial expression, Pupil diameter

I. INTRODUCTION

Depression is one of the most common mental disorders world-
wide, which imposes an enormous social and economic burden
[1]. Depression may seriously interfere with the patient’s daily life,
even leading to suicidal tendencies [2] [3]. Currently, the diagnosis
of depression is primarily based on self-rating scales and clinical
interviews. However, these diagnostic methods rely heavily on the
patient’s subjective perception and the doctor’s professional knowl-
edge [4]. Studies on disease surveillance based on physiological and
behavioral data are widely conducted [5] [6], and have provided quite
a few clues for the objective auxiliary diagnosis of depression [7] [8]
[9].

The ability to recognize emotions is impaired in many people
with mental disorders [10]. As a behavioral signal, facial expression
plays a crucial role in emotion recognition [11]. Therefore, facial
expression has become a relatively effective tool for identifying
emotional disorders [12]. Moreover, pupil dilation has also been
shown to be associated with emotion [13]. Multimodal data can
capture complementary information not visible in unimodal data [14].
Literature well established the multimodal fusion method is superior
to the unimodal method [15]. Many studies have extracted depression
discriminative cues from multiple modalities. However, we have not
found any multimodal fusion research based on facial expression and
pupil diameter. Hence, this paper attempts to fuse facial expression
and pupil diameter to explore a more precise depression recognition
method.

Currently, feature fusion methods are divided into deep learning
and traditional methods. Some representative deep learning models
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have been applied to multimodal fusion analysis, such as Deep
Belief Net (DBN) [16], Recurrent Neural Network (RNN) [17],
Autoencoder (AE) [18] [19], Convolutional Neural Network (CNN)
[20], Transformer [21], etc. Deep learning often requires a large
number of samples [22], but our depression assessment research has
limited data. [23] used multimodal information for data enhancement.
Nevertheless, it is still difficult to avoid the problem that the model
is prone to overfitting. In this study, we choose the traditional fusion
methods based on Canonical Correlation Analysis (CCA) [24] to
accommodate the limited data set [25] [26]. CCA is widely applied in
affective computing, and it can detect patterns of common variation
in multimodal, which allows it not only to fuse information but also
to extract the relevant features. CCA takes the effective discriminant
features, which can reveal potentially significant variations in facial
expression and pupil diameter [27]. Despite the profound theoretical
foundation and practical success of CCA in multimodal fusion, it
can only handle vector features. However, the features utilized in
many real-world applications are usually multi-dimensional arrays.
High-dimensional features and small-scale data sets may lead to the
singularity problem of the covariance matrix of CCA [28]. To solve
this problem [29], [30] proposed Two-Dimensional CCA (2DCCA),
which extended CCA to matrix-valued data. 2DCCA retains a matrix
representation of data but can’t be applied to tensor-valued data. A
typical approach for generalizing 2DCCA to tensor is to reshape each
data tensor into a matrix. This strategy breaks the structure of the
tensor data and leads to a curse of dimensionality [31]. [32] proposed
Tensor Canonical Correlation Analysis (TCCA) to overcome this
difficulty. [32] interpreted 2DCCA as a non-convex method for the
low-rank tensor factorization problem, allowing them to receive a
tensor extension of 2DCCA.

Although the above methods can carry out effective multimodal
fusion, they can not analyze the trials in the paradigm most associated
with depression. In the specific application of depression recognition,
previous studies rely on the arousal and value index to select the
trials and ignore the interaction between trials. Redundant features
obtained using low-correlation trials can adversely affect true features
and produce heterogeneity in the data [33]. Selecting a trial suitable
for depression recognition can also reduce feature dimensionality
to eliminate the effects of noise, which helps classifiers focus on
essential features and ignore misleading features [34]. Moreover, the
optimal subset of trials can decrease the computational complexity
of experimental data and help avoid over-fitting, leading to a better
performance of depression recognition [8].

For integrating the complementary information from two feature
tensors, we propose Trial Selection Tensor Canonical Correlation
Analysis (TSTCCA) to combine facial expression and pupil diameter
for depression recognition. Mutual information is used to measure the
spatiotemporal correlation between two modalities trials. Intending to
increase the reliability of estimates, TSTCCA selects the trial by the
mutual information between feature tensors of two modalities and
explores optimal representations from multimodal tensor data sets,
which is also the origin of the name TSTCCA. The Support Vector
Machines (SVM), K-Nearest Neighbor (kNN), and Random Forest
(RF) are utilized to detect depression. The main contributions of this
paper include the following three points.
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• It proposes a new multimodal feature fusion method TSTCCA
for depression recognition. TSTCCA measures the spatiotempo-
ral correlation and complementarity between facial expression
and pupil diameter in tensor feature space and explores optimal
representations from multimodal tensor data sets.

• It conducts a pioneering study of multimodal fusion research
based on facial expression and pupil diameter. The experimental
results verify the validity of the complementarity of facial
behavioral phenotypes and pupil physiological characteristics in
depression assessment.

• It discusses preferred trial subsets related to depression based
on the retained trials, which reveals that negative and positive
trials are always more likely to be selected. It also provides an
opportunity for paradigm optimization that may help support the
diagnosis of depression in the future.

The remainder of this paper is organized as follows. Section II
discusses the related work of the current study. In Section III, we
introduce the design of our experiments. In Section IV, the TSTCCA
method is presented in detail. Section V describes the depression
recognition experiments and classification performance. Then, the
experimental results are discussed in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

Facial expressions provide discriminative cues for depression anal-
ysis. Depressed individuals present low expressibility of facial ex-
pressions [35] [36]. The “Audio/Visual Emotion Challenge” (AVEC)
series inspired extensive video and audio depression recognition
research [37]. In image modality, [38] presented a deep architecture
termed DepressNet to recognize depression through visual represen-
tations. [39] combined 2D-CNN networks and distributed learning to
estimate depression levels. The above studies used deep architectures
to pre-train their models and fine-tune their models through AVEC
database [40]. To improve the accuracy of depression recognition,
some scholars trained deep models from scratch rather than pre-
training. [41] extracted human behavior primitives features (action
units, gaze direction, and head pose) from the video and fed them
to a multi-scale network for depression analysis. [42] integrated
the attention mechanism into the 2D-CNN network and proposed a
novel architecture named Deep LocalGlobal Attention Convolutional
Neural Network (DLGA-CNN). Although the single image contained
a lot of discriminant information related to depression recognition,
the temporal information in the video was neglected. [43] presented
an end-to-end intelligent system to extract the representation of the
entire video clip. [44] proposed the Maximization and Differentiation
Network (MDN) to address the overfitting problem of 3D-CNN.
[45] presented a depression recognition framework in the 5G mobile
network scenario and conducted the validation experiment.

Eye movement is an essential behavioral signal, which has been
widely used in depression recognition [46] [47]. [48] extracted eleven
eye movement features from three tests (fixation stability, free-
viewing, and anti-saccade tests) to classify 65 volunteers, and the
model achieved an accuracy of 86.0%. [49] combined eye movements
and the attentional bias theory and obtained psychological features
from eye movement data. The accuracy reached 77.0% when using
the SVM classifier. [9] assessed the application of face and eye
movement tracking during cognitive task performance for depression
recognition.

As one of the many eye movement indicators, pupil diameter can be
well measured automatically [50]. [51] investigated the classification
abilities of several eye movement features for five human emotions.
The conclusion was that pupil diameter had a higher discrimination

ability for affective classification than the other eye movement
features. [52] showed that the pupillary motions of depressed patients
were different from normal controls. In [53], it is considered that
depressed individuals displayed more intense sustained pupil dilation
than never-depressed ones after emotional stimuli. [54] analyzed
the relationship between motivational states and affective processes
and found depressed participants with more highly motivated had
more significant pupillary responses. [55] proved that the pupillary
response to light in depressed patients significantly differed from
that in normal controls. [56] also revealed that pupil diameter was a
significant indicator of depression assessment.

Multimodal fusion method can represent different modalities uni-
formly, whose ability outperforms the unimodal method [15]. More
and more scholars fused data from different distributions, sources,
and types to enhance the performance of depression recognition.
Based on AVEC database, [57] presented a multimodal spatiotempo-
ral representation architecture to predict the severity of depression.
The multimodal attention feature fusion (MAFF) method and the
spatiotemporal attention (STA) network make outstanding contribu-
tions to the proposed architecture. [58] adopted facial expression,
movement, Self-Reported Depression Scale (SDS) information, and
Self-Reported Anxiety Scale (SAS) information to obtain a diagnostic
framework for depression, which consisted of CNN and long short-
term memory (LSTM) network. [59] fused electroencephalography
(EEG), pupil diameter, and other eye movement features (blink times,
saccade counts, etc.) at the decision level, and proposed a content-
based multiple evidence fusion (CBMEF) method. In [19], pupil area
signals and EEG are fused through the denoising autoencoder and
built Mutual Information Based Fusion Model (MIBFM) for mild
depression detection.

In recent years, though most research on multimodal fusion has
been based on deep learning, some scholars attempted to apply
traditional methods. CCA is a powerful multimodal fusion method
that embeds two sets of variables with different dimensions into
complex high-dimensional spaces [60]. [61] utilized CCA to fuse
structural magnetic resonance imaging (sMRI), functional magnetic
resonance imaging (fMRI), and electroencephalogram (EEG) data
of people with schizophrenia. [62] used CCA to uncover patterns
related to mild cognitive impairment by applying it to sMRI and
fMRI data. [63] achieved diagnosing Alzheimer’s disease using the
fusion method based on CCA. After decades of development, scholars
have proposed various improved algorithms based on CCA, and these
methods also have excellent performance in the field of multimodal
fusion. 2DCCA implemented the analysis of data without damaging
the 2D feature structure. To operate 2D fMRI images directly,
[64] introduced 2DCCA into multiset canonical correlation analysis
(MCCA) structure for multi-subject medical images analysis. [65]
applied 2DCCA to fuse high-resolution multispectral (HRM) images
through the low-resolution multispectral (LRM) and high-resolution
panchromatic (HRP) images. [66] employed deep canonical correla-
tion analysis (DCCA) to integrate multimodal emotion data into a
hyperspace.

Although many studies have focused on recognizing depression
through multimodal data, few have fused facial expressions and pupil
diameters, and previous studies ignored the interaction between trials.
The proposed TSTCCA selects the trial by the dependence between
facial expression and pupil diameter feature tensors and explores
optimal representations from multimodal tensor data sets, which
provides a novel method for multimodal depression recognition.

III. PARADIGM AND DATA
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TABLE I: Stimulus paradigm.
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Block1
Segment Focus Neutral Focus Positive Focus Neutral Focus Negative Focus

Identifier ’ + ’ 1 2 3 4 5 ’ + ’ 6 7 8 9 10 ’ + ’ 11 12 13 14 15 ’ + ’ 16 17 18 19 20 ’ + ’

Trial room basket outlet clock clothespins puppies family seal butterfly athletes chair coffee cup key ring book abstract art mutilation toilet burn shadow hand

Duration Time(s) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Block2
Segment Neutral Focus Positive Focus Neutral Focus Negative Focus

Identifier 21 22 23 24 25 ’ + ’ 26 27 28 29 30 ’ + ’ 31 32 33 34 35 ’ + ’ 36 37 38 39 40 ’ + ’

Trial plate abstract art bowl clock tool giraffes bunnies women mother adult cabinet spoon light bulb mug mug snake victim snakes baby sick kitty

Duration Time(s) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

A. Paradigm
The International Affective Picture System (IAPS) is the most used

standardized emotion elicitation database [67], which has been widely
used in affective computing research [68] [69]. IAPS can provide
robust emotional induction in a controlled environment, even for
different subjects. Therefore, we select 10 positive, 20 neutral, and 10
negative emotional pictures from IAPS to design a stimulus paradigm
with emotional effects for depression recognition. The experiment
contains two blocks, and each block consists of four segments. Each
segment includes the annotation focus and five stimulation pictures.
Each stimuli picture is considered a trial, and more details are shown
in Table 1.

During the experiment, subjects sit in front of a computer screen
at about 50-70 cm distance. Under the guidance of the experimenter,
the subjects complete the calibration and watch the displayed trials
sequence freely. Each trial plays for 5 seconds, and each rest period
between two sets of trials plays for 5 seconds. We also asked subjects
to reduce body and head movements during the experiment.

Facial expressions are collected by Logitech C1000, the device has
30 fps frame rate and 1920 × 1080 P resolution. Since the desktop
eye tracker collects the whole body image, the algorithm needs to
crop the eye image, resulting in a low resolution of the eye image,
and the existing wearable will occlude some crucial facial landmarks.
Hence, an eye tracker is redesigned to record pupil changes. The
frame rate of eye tracking is 200 fps, and the resolution is 320 ×
200 P.

B. Subjects
This study is approved by the ethics committee of the Third

People’s Hospital of Tianshui City. Before the experiment, all subjects
signed the written informed consent. The ages of all subjects are
between 18 and 55 years old [70], and all subjects at least have a
primary school education level. All subjects haven’t got psychotropic
drug treatment in the last two weeks, and have no severe suicidal
tendencies or serious physical illnesses. The normal controls have
no personal or family history of mental illness. After receiving the
structured Mini International Neuropsychiatric Interview (M.I.N.I.)
and the Patient Health Questionnaire (PHQ-9), all the depressed
patients meet the DSM-IV major depression diagnostic criteria and
the PHQ-9 score ≥5. We use 106 valid data, including 53 depressed
subjects (15 males and 38 females) and 53 normal control subjects (14
males and 39 females). Since the gender ratio between the depression
group and the comparison group is basically balanced, the effect of
gender is ignored in the data analysis process.

IV. METHOD

In order to explore the effects of different emotional stimuli on pa-
tients with depression and realize effective recognition of depression,
we propose TSTCCA to fuse facial expression and pupil diameter
features. Compared with CCA and TCCA, TSTCCA explores the
spatiotemporal correlation between two modalities, which not only

Neutral
Segment focus Positive

Segment focus Neutral
Segment focus Negative

Segment focus

Fig. 1: The paradigm process.

Fig. 2: The experimental environment.

eliminates the low-correlation trials to construct a suitable paradigm
that better reflects the differences between the depressed patient and
normal control, but also optimizes the feature representation to reduce
the computational complexity.

The TSTCCA flow chart is shown in Fig. 3. The framework in
the figure mainly comprises preprocessing, feature extraction, mutual
information calculation, and fusion classification modeling. First, the
raw facial video is preprocessed to identify facial regions by face
alignment, and the time series of pupil diameters are generated by
the software shipped with the eye tracker and denoised. Histogram
of Oriented Gradient (HOG) features are extracted for facial video,
while multidimensional time domain and frequency domain features
are extracted for pupil time series. Mutual information is used to
analyze and measure the dependency between the two modalities’
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Fig. 3: The flow chart of TSTCCA.

features, based on which trial selection is conducted. We analyze
the correlation between two modalities’ feature tensors and project
the tensors as vectors. Then, two projected feature vectors are
horizontally concatenated for feature layer fusion of TCCA. Finally,
we use SVM, kNN, and RF algorithms to classify the bimodal fused
representations.

In section A, we first provide the necessary notation and concepts
for algebraic operation. Then we introduce CCA and TCCA methods
in section B. Finally, the TSTCCA method is described in detail in
section C.

A. Notation and Concepts in Algebraic Operation

Before introducing the methods, some notation and concepts in
algebraic operation must be defined. Scalars, vectors, matrices, and
higher-order tensors are denoted by lower-case letters (a, b, c, · · · ),
upper-case letters (A,B,C, · · · ), bold capital letters (A,B,C, · · · ),
and calligraphic letters (A,B, C · · · ), respectively. Let X and Y be
n-order tensors of size d1 × d2 · · · × dn. The inner product on X
and Y is defined as

⟨X ,Y⟩ =
d1∑
i1

· · ·
dn∑
in

xi1i2···inyi1i2···in (1)

The mode-k product of X with a matrix G of size g × dk is a
tensor of size d1 × · · · × dk1 × g × dk+1 · · · × dn given by

(X ×k G)i1···im−1jim+1···in =

dk∑
ik=1

xi1i2···ingjik (2)

Let A1, A2 · · ·An be vectors of size d1, d2 · · · dn, respectively.
The outer product of A1, A2 · · ·An is an n-order tensor defined by

(A1 ◦ · · · ◦An)i1i2···in = (A1)i1 · · · (An)in (3)

The Kronecker product of two matrices E of size m × n and F
of size p× q is an mp× nq matrix defined by

E ⊗ F = (eijF )mp×nq (4)

If there are vectors Y1, · · · , Yd and Y = Y1 ◦ · · · ◦ Yd, Y is a
rank-one tensor.

B. Related Methods

Suppose there are two matrices X ∈ Rn×d1 and Y ∈ Rn×d2 .
The basic idea of CCA is to seek two sets of projection vectors
A ∈ Rd1×1 and B ∈ Rd2×1 to maximize the correlation between
the canonical variables X ′ = XA and Y ′ = Y B.

argmax
A,B

ATCXY B

s.t. ATCXXA = 1, BTCY Y B = 1

(5)

where CXY corresponds to the cross-covariance of X and Y ,
CXX and CY Y correspond to the auto-covariance of X and Y ,
respectively. Eq. (5) can be solved by the Singular Value Decompo-
sition (SVD) after matrix standardization. The optimization objective
becomes the following equation

argmax
A,B

UTCXX
− 1

2CXY C
− 1

2
Y Y V

s.t. UTU = 1, V TV = 1

(6)

where U = C
1
2
XXA and V = C

1
2
XXB. Suppose U and V are a

pair of left and right singular vectors of M = C
− 1

2
XXCXY C

− 1
2

Y Y ,
the optimization problem of Eq. (6) is transformed into finding the
largest singular value.

Tensor Canonical Correlation Analysis (TCCA) [32] extends CCA
to tensor-valued data to keep the original structure of the tensors. With
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generality, suppose two n-dimensional tensors X ∈ Rd1×···×dm and
Y ∈ Rd1×···×dm . TCCA seeks two tensors A = A1 ◦ · · · ◦ Am of
size d1 × · · · × dm and B = B1 ◦ · · · ◦ Bm of size d1 × · · · × dm
that maximize the correlation between ⟨A,X⟩ and ⟨B,Y⟩, and Eq.
(5) can be rewritten as Eq. (7)

argmin
A,B

(⟨A,Xt⟩ − ⟨B,Yt⟩)2

s.t.
1

n

n∑
t=1

⟨A,Xt⟩2 =
1

n

n∑
t=1

⟨B,Yt⟩2 = 1
(7)

where {At,Bt}nt=1 are the samples from X , Y . Eq. (7) can be
solved by the idea of tensor decomposition. X can be projected into
a low-dimensional space by one component Ah of A, with the other
components of A fixed. The partial contraction Xh of X with all
components of A except Ah is defined as

Xh = X ×2 AT
1 · · · ×h AT

h−1 ×h+2 AT
h+1 · · · ×m+1 AT

m (8)

The partial contraction Y h of Y is defined in the same way. A
and B in Eq. (7) are regarded as existing in a low-rank space. There
is a formula as follows

Xfh =

n∑
t=1

(Xt)(h+1)

(
Af−1,m · · · ⊗Af−1,h+1⊗

Af,h−1 ⊗ · · ·Af,1

)
Y fh =

n∑
t=1

(Yt)(h+1)

(
Bf−1,m · · · ⊗Bf−1,h+1⊗

Bf,h−1 ⊗ · · ·Bf,1

)
(9)

where f is the current number of iterations, Af,h−1 represents Ah−1

of the f-th iteration. Then, the following updating formula can be used
to obtain Af and Bf .

Âfh = (XT
fhXfh + cxI)

−1XT
fhY fhBf−1,h,

Afh = Âfh∥Âfh∥−1

ˆBfh = (Y T
fhY fh + cyI)

−1Y T
fhXfhAfh,

Bfh = ˆBfh∥ ˆBfh∥−1

(10)

where cxI and cyI are the regularization terms.

C. Trial Selection Tensor Canonical Correlation Analysis

Mutual information can measure the relationship between two
random variables and provide a non-negative value. The higher the
value, the higher the dependence between the two variables [71].

Pupil size variation is a measure of the brain’s reactivity to emo-
tional stimuli. In combination with facial expression, pupil dilation
could potentially be an indicator of variation in emotional intensity
[72] [73]. Previous studies always ignore the interaction between
trials and provide redundant features. To avoid these drawbacks,
TSTCCA measures the dependence between facial expression and
pupil diameter trials by mutual information and selects a subset
of trials with a strong correlation. The complementary information
captured from facial expression and pupil diameter can eliminate
trials unsuitable for depression recognition and optimize the original
paradigm. After that, we conduct canonical correlation analysis
between two modalities’ feature tensors corresponding to the selected
trial.

Suppose the two modalities feature tensors are inputs, X ∈
Rn×m×d1 indicates facial expression features tensor, Y ∈
Rn×m×d2 indicates pupil diameter features tensor. X and Y can be
divided into n components X = {Xi}ni=1 and Y = {Y i}ni=1, where

Algorithm 1: TSTCCA

Require: Facial expression tensor feature X ∈ Rn×m×d1 ;
Pupil diameter tensor feature Y ∈ Rn×m×d2 ;
Number of selected trials k;
Regularization parameters cx and cy .

1: for i=1,2...,n do
2: for j=1,2,...,m do
3: Calculate the mutual information MI(Xi, Yij).
4: end for
5: Obtain the mutual information matrix of i-th subject MIi.
6: end for
7: Calculate the mean matrix for two modalities trials in Eq. (12).
8: Sort the values in MIb in descending order.
9: Select the top k trials, obtain the selected facial expression

features tensor X̃ and the selected pupil diameter features
tensor Ỹ .

10: Initialize Rx, Ry , Lx and Ly with random numbers.
11: Calculate XR, Y R, XL, and Y L by Eq. (13).
12: repeat
13: Fix Rxf and Ryf , update Lxf and Lyf .

L̂xf = (XT
RfXRf + cxI)

−1XT
RfY RfLy,f−1

Lxf = L̂xf∥L̂xf∥−1

L̂yf = (Y T
RfY Rf + cyI)

−1Y T
RfXRfLxf

Lyf = L̂yf∥L̂yf∥−1

14: Fix Lxf and Lyf , update Rxf and Ryf .
R̂xf = (XT

LfXLf + cxI)
−1XT

LfY LfRy,f−1

Rxf = R̂xf∥R̂xf∥−1

R̂yf = (Y T
LfY Lf + cyI)

−1Y T
LfXLfRxf

Ryf = R̂yf∥R̂yf∥−1

15: f = f + 1
16: until (converged)
17: Project X and Y with XR, YR, XL, and YL.

X ′ = LT
x X̃Rx, Y

′ = LT
y ỸRy

18: Horizontally concatenate X ′ and Y ′.
W = [X ′;Y ′]

Ensure: The fusion feature matrix W .

Xi ∈ Rm×d1 and Y i ∈ Rm×d2 represent the i-th subject of facial
expression features tensor and pupil diameter features tensor, respec-
tively. For each Xi and Y i, there are formula Xi = {Xij}mj=1 and
Y i = {Yij}mj=1, where Xij ∈ Rd1 and Yij ∈ Rd2 represent the j-th
trial of the i-th subject of facial expression features tensor and the j-th
trial of the i-th subject of pupil diameter features tensor, respectively.
The formula of mutual information between facial expression features
tensor and pupil diameter features tensor is

I(X ;Y) =
∑
X∈X

∑
Y ∈Y

p(X,Y )lg
p(X,Y )

p(X)p(Y )
(11)

where p(X,Y ) is the joint distribution of (X,Y ), p(X) and p(Y )
are the marginal distributions of X and Y , respectively.

The process of the trial selection canonical correlation analysis
(TSTCCA) method is shown in Algorithm 1. For each subject, we
calculate the crossing mutual information MI(Xi, Yij) ∈ R1×m

for each pupil diameter trial Yij and m facial expression trials Xi

(in lines 2-4), which can explore the implied relationship between
pupil and expression at different moments. Since there are m pupil
diameter trials in total, the algorithm performs m mutual informa-
tion calculations for each subject. Then, we concatenate m vectors
MI(Xi, Yij), j = 1, 2, · · · ,m into a matrix MIi ∈ Rm×m (in
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line 5), which is the mutual information matrix of the i-th subject.
For the i-th subject, the a-th column of MIi represents the mutual
information between the a-th trial of the facial expression and all trials
of the pupil diameter, and b-th row represents the mutual information
between the b-th trial of pupil diameter and all trials of the facial
expression.

After that, we obtain n matrices MIi, i = 1, 2, · · · , n of n
subjects, all of n MIi stacked vertically and horizontally respectively
to form the mutual information matrix MIcol ∈ R(n×m)×m and
MIrow ∈ Rm×(n×m), which are shown in Fig. 5. Vertical stacking
and horizontal stacking are equivalent to joining together the columns
and rows of all MIi, i = 1, 2, · · · , n, respectively. The meaning of
MIcol and MIrow correspond to the row and column interpretation
of MIi, respectively, except that MIi is based on a single subject,
while MIcol and MIrow are based on all subjects, and are more
general. For example, for n subjects, the a-th column of MIcol
represents the mutual information between the a-th trial of the facial
expression and all trials of the pupil diameter. Apparently, for all
subjects, when a specific expression occurs in a trial, vertical stacking
can find whether there is a relevant pupil change in other trials,
while horizontal stacking, in contrast, can explore facial behavior
at different moments associated with a particular pupil change.

The arithmetic mean can represent the average level of a set of
data, so MIcol and MIrow are averaged by row and column,
respectively, and the mean matrix MIcm ∈ R1×m and MIrm ∈
R1×m are obtained. The average of MIcm and MIrm is calculated
as follows

MIb =
MIcm +MIrm

2
(12)

Moreover, we select top k trials with maximum mutual information.
Two modalities feature tensors X , Y after trial selection are named
X̃ ∈ Rn×k×d1 , Ỹ ∈ Rn×k×d2 .

We seek right transforms Rx ∈ Rd1×1 and Ry ∈ Rd2×1, and left
transforms Lx ∈ Rk×1 and Ly ∈ Rk×1 to maximize the correlations
between X ′ = LT

x X̃Rx and Y ′ = LT
y ỸRy . For X̃ and Ỹ are three-

dimensional tensors, Xfh and Y fh in Eq. (9) can be simplified to
the following formula

XR = X̃Rx Y R = ỸRy

XL = X̃ †Lx Y L = Ỹ†Ly

(13)

where X̃ † and Ỹ† are the tensors of transposing the first and second
dimensions of X̃ and Ỹ , respectively. We use Eq. (10) to update Rx,
Ry , Lx, and Ly iteratively until convergence.

After obtaining the left and right transforms, the original feature
tensors X̃ and Ỹ are projected into a new feature space. Finally, X ′

and Y ′ are concatenated along the horizontal to produce a multimodal
feature matrix W = [X ′;Y ′], which is the input of classifiers.

V. EXPERIMENT AND RESULTS

In this section, we first introduce the preprocessing and feature
extraction of the data. Then we propose three different trial selection
comparison strategies (strategy 2, strategy 3, and strategy 4) to prove
the reliability of strategy 1 in Algorithm 1 (in lines 1-8). Because
the value of k (the number of selected trials) in Algorithm 1 is
undetermined, we discuss the performance of different numbers of
trials selected by four strategies and discover that strategy 1 of
TSTCCA can provide the best performance with 25 trials. Finally,
we detect depression by utilizing TSTCCA and compare this method
with unimodal facial expression, unimodal pupil diameter, CCA
fusion, and TCCA fusion to verify the superiority of our method.

We use kNN, SVM, and RF algorithms for the final classification,
whose parameter ranges are shown in Table II. The hold-out method
is applied 100 times for each experiment, and the accuracies are
averaged to obtain a general result. At each time of classification, the
106 subjects in the data set are randomly split into the training and test
sets, with sample sizes of 74 and 32, respectively. Furthermore, we
use cross-validation to implement the hyper-parameter optimization
involved in classifiers.

TABLE II: Parameter ranges of three classifiers.

Classifier Parameter Range

SVM

RBF kernel
gamma 10−8 ∼ 108

C 10−8 ∼ 108

linear kernel C 10−8 ∼ 108

poly kernel degree 2 ∼ 4

kNN nneighbors 1 ∼ 11

RF
nestimators 1 ∼ 20

maxdepth 1 ∼ 20

A. Preprocess

The pupil diameter data are extracted from raw eye movement
video by Pupil Player [74], which includes timestamps and confidence
scores. Next, the pupil diameter data of each subject are divided
into 40 segments according to the timestamps corresponding to all
trials in the paradigm. The pupil diameter data with confidence scores
less than 0.6 are removed to improve the credibility of the data.
The pupil diameter data corresponding to the 20th, 38th, and 39th
trials are removed because their overall confidence scores are too low.
Therefore, 37 trials are retained in the final data.

Corresponding to the pupil diameter data, the facial expression data
of each subject are also divided into 40 segments, and the 20th, 38th,
and 39th segments of expression data are removed. The frame rate
of the input facial expression video is 30 fps, and each trial lasts 5
seconds, thus yielding 150 frames per trial. Due to the inconsistency
of frame rates, only 100 frames are taken for each trial. Finally, the
Face-Alignment [75] face localization technique is used to crop the
face region of each frame.

B. Feature Exaction

Multiple studies have proved that HOG is more suitable for
describing facial expressions than other hand-crafted features [76]
[77]. Thus, for facial expression data, we first extract a HOG [78]
feature X ∈ R288×1 from each frame. The HOG feature parameters
are set as follows: the window size is (32,64), the block size is
(16,16), the block stride is (16,16), the cell size is (8,8), and the
number of bins is 9. Since each trial contains 100 frames of images,
each trial includes 100 HOG features. We calculate the average value
of 100 HOG features on each trial to reduce the dimensionality of
features. Finally, each trial is represented by only one HOG average
feature, so HOG features extracted from 106 subjects are denoted by
X ∈ R106×37×288.

The eye tracker with a frame rate of 200 collects pupil images,
and pupil-lab [74] does the follow-up analysis. Each frame of the
pupil image corresponds to a pupil diameter value and finally forms
a time series of pupil diameter. We refer to the features described in
Table 2 of [79] for this time series. According to the characteristics
of our data set, 8 time domain features (p1-p4, p7, p9, p11, and
peak-to-peak value) and 12 frequency domain (p12-p23) features are
selected. Then, each trial is represented by a feature vector Y ∈
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R20×1 in the time and frequency domains. Finally, features in the
time and frequency domains extracted from 106 subjects are denoted
by Y ∈ R106×37×20.

C. TSTCCA with Different Numbers of Trials

The number of selected trials (k) affects the performance of
TSTCCA, so we need to seek the optimal k. The mutual information
calculation method introduced in Algorithm 1 (in lines 1-8) is named
trial selection strategy 1. To demonstrate its superiority, we devise
three other trial selection strategies.

(1) Strategy 2: In line 3 of Algorithm 1, strategy 1 calculates
crossing mutual information MI(Xi, Yij) ∈ R1×m for each pupil
diameter trial Yij and m facial expression trials Xi. Unlike strategy 1,
strategy 2 calculates one-to-one mutual information MI(Xij , Yij) ∈
R1 for single pupil diameter trial Yij and single facial expression trial
Xij . Crossing mutual information introduces the connection between
two modalities in different time periods into trial selection and is not
limited to strict time synchronization. The comparison of the two
types of mutual information is shown in Fig. 4. Similar to strategy 1,
strategy 2 concatenates m MI(Xij , Yij) into a vector MIi ∈ R1×m

in line 5. In line 7, it uses the vertically stacking method to obtain the
mutual information matrix MIall ∈ Rn×m, and averages MIall
by row. Finally, it obtains the mean matrix MIu ∈ R1×m.

(2) Strategy 3: The first 6 lines of Algorithm 1 are the same as
strategy 1, strategy 3 calculates crossing mutual information. In line
7, strategy 1 stacks n MIi vertically and horizontally respectively to
obtain MIcol and MIrow , and averages them by row and column
respectively to get MIcm and MIrm. Finally, the arithmetic mean
of MIcm and MIrm is used as the basis for trial selection. Strategy
3 takes a simpler way, it only needs MIcm to select trials. The g-
th element of MIcm indicates the mutual information between the
features corresponding to all pupil diameter trials of all subjects and
the features corresponding to the g-th facial expression trial.

(3) Strategy 4: Similar to strategy 3, it obtains the vector MIrm in
line 7. The g-th element of MIrm indicates the mutual information
between the features corresponding to all facial expression trials of
all subjects and the features corresponding to the g-th pupil diameter
trial. The differences between strategy 3 and strategy 4 are shown in
Fig. 5.

To determine the value of k, we employ TCCA method as a
basis. The k of TCCA equals 37, which means it does not make
any trial selection. We utilize four trial selection strategies to get
subsets of 37 original trials respectively, and focus on comparing
the performance of strategy 1 with other strategies. Fig. 6 illustrates
the highest classification accuracies of four strategies with different
values of k. From Fig. 6, strategy 1 achieves the highest accuracy of
78.81%, when selecting 25 trials. The possible reason is that strategy
1 takes the arithmetic average of mutual information of strategy 3,
and strategy 4, and inherits valuable information from both strategies.
In addition, the classification accuracies of the four strategies are
always higher than the baseline method TCCA. According to the
above results, we select 25 trials for the subsequent analysis.

The 37 trials in the original paradigm contain 10 positive stimulus
trials, 7 negative stimulus trials, and 20 neutral stimulus trials. The
25 selected trials in strategy 1 contain 8 positive stimulus trials,
5 negative stimulus trials, and 12 neutral stimulus trials, which
account for 80%, 71.43%, and 60% of the total positive, neutral,
and negative stimulus trials, respectively. Apparently, in the selected
trials, there is a greater proportion of positive and negative stimuli
than neutral stimuli. It has been proved that depressed patients pay
significantly different attention to negative and positive information
than normal controls. The attention bias to negative information of

Xi1

Yi1 Yi2 Yin

…

…

MI(Xij,Yij)

Xi1 Xi2 Xin

Yi1 Yi2 Yin

…

…

MI(Xi,Yij)

One-to-one

Mutual

Information

Crossing 

Mutual

Information

Xi2 Xin

Fig. 4: Two option to calculate mutual information. The first figure is
the one-to-one mutual information, which calculates the mutual infor-
mation between one-to-one correspondence trials of two modalities.
The second figure is the crossing mutual information, which crosses
to calculate the mutual information between trials of two modalities.

MI1
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…

MInMI1 MI2 … MIn

Mutual Information by Column(MIcol)

Mutual Information by Row(MIrow)

Fig. 5: Two options to stack mutual information matrices. MIcol
stacks MIi, i = 1, 2, · · · , n vertically, MIrow stacks MIi, i =
1, 2, · · · , n horizontally.
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Fig. 6: Best classification performance of TSTCCA when selecting
different numbers of trials. Each element in the histogram represents
the accuracy corresponding to the best-performing classifier. Each
point in the line represents the accuracy corresponding to the best-
performing classifier and selection strategy.

depressed patients has a relatively consistent result and is affected
by the severity of the depression [80], [81]. Our paradigm of free
viewing of emotional pictures is a sort of visual task. Regarding visual
tasks, [82] used emotional face stimulation and found that depressed
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patients had directed their attention selectively to negative faces.
Some scholars have also studied the effect of positive stimulation
on patients with depression. Patients with more severe depression
demonstrated stronger negative mood prediction biases and weaker
positive mood prediction biases [83]. [84] studied the biases between
depressed patients and normal controls using both verbal and pictorial
stimuli and found that depressed patients reduce perceptual sensitivity
to positive pictures and words. Previous studies have verified the
reliability of our choice of k=25.

D. Comparison of Unimodal and Other Multimodal Fusion
Methods

To verify the superiority of TSTCCA, we compare the performance
of unimodal facial expression, unimodal pupil diameter, CCA fu-
sion, and TCCA fusion. For CCA fusion, there is one parameter
ncomponent = 2, which is the number of components to keep.
For TCCA fusion and TSTCCA fusion, there are three parameters
niter = 100, cx = 0.01, and cy = 0.01, which are the maximum
number of iterations and regularization parameters of x and y.
Moreover, k = 25 in TSTCCA, which means TSTCCA selects
25 trials for analysis. SVM, kNN, and RF algorithms are used
for classification. The box plots in Fig. 7 show the distribution of
classification accuracies. The classification accuracies of the above
methods obtained by SVM are generally the best. The accuracies of
unimodal facial expression and unimodal pupil diameter are only
59.38% and 64.78%, respectively. Among the multimodal fusion
method, TSTCCA has the best performance, whose accuracy is
78.81%. Relatively speaking, when 100 classifications are performed,
the accuracy distribution of TSTCCA is more concentrated, which
indicates that it can maintain a stable and excellent classification
performance.

Confusion matrix [85] is an index to evaluate the classification
results of the model, each column of the matrix represents an instance
prediction of a class, while each row represents an instance of an
actual class. Sensitivity (also known as recall rate) represents the
proportion of the actual detected positive instances to the total positive
instances, and specificity represents the proportion of the actual
detected negative instances to the total negative instances. Sensitivity
and specificity measure the capacity of the classifier to recognize
positive and negative instances, respectively.

Fig. 8 is the confusion matrices of SVM. TSTCCA has the highest
precision of 84.38%, which indicates that the fusion representation
extracted by TSTCCA can significantly reflect the facial and pupillary
changes of depressed subjects. The classification results of three
classifiers are shown in Table III, Table IV, and Table V. Regardless
of which classifier is used, TSTCCA consistently achieves the highest
F1 values, and it has a specificity of 87.51% with SVM classifier.
These facts prove our model can be used for preliminary screening
of depression to a certain extent. In general, multimodal results are
superior to unimodal results, and TSTCCA performs the best given its
advantages. We use the paired sample t-test to assess the differences
between TSTCCA and other methods and find significant differences,
which reveals that TSTCCA has a significant improvement over other
methods.

VI. DISCUSSION

A. Comparative Analysis of Unimodal and Multimodal Fusion
When we only consider the unimodal features, the classification

performance is always unsatisfactory. Each model has advantages and
disadvantages. Just as facial expression directly reflects an individual
actual emotional state that can hardly be disguised, and pupil diameter
reflects the physiological response of the subject after the stimulus.
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Fig. 7: Box plots of the classification accuracies obtained by
unimodal facial expression, unimodal pupil diameter, CCA fusion,
TCCA fusion, and TSTCCA fusion. (a) is the classification result of
SVM, (b) is the classification result of kNN, (c) is the classification
result of RF.
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Fig. 8: Confusion matrices of (a) unimodal facial expression, (b) unimodal pupil diameter, (c) CCA fusion, (d) TCCA fusion, and (e)
TSTCCA fusion by SVM.

TABLE III: Evaluation criteria (accuracy, sensitivity, specificity, and
F1-score) of unimodal facial expression and pupil diameter, as well
as multimodal CCA, TCCA, and TSTCCA using the SVM classifier
and indications of significant difference (*: p<0.05, **: p<0.01,
***: p<0.001).

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) F1-score

Facial expression 59.38*** 55.51** 57.44*** 0.55***

Std. 7.60 15.95 13.00 0.09

Pupil diameter 64.78*** 63.88*** 67.16*** 0.63***

Std. 8.81 17.24 17.90 0.10

CCA 72.84*** 71.69 74.47*** 0.72***

Std. 7.35 12.43 11.91 0.09

TCCA 72.66*** 60.43*** 85.25* 0.68***

Std. 6.89 11.56 11.28 0.09

TSTCCA 78.81 70.34 87.51 0.76
Std. 6.67 11.66 10.42 0.08

Based on the demand of clinical application, we must combine
the beneficial information of multimodal to improve the recognition
rate of depressed patients. The ability of a multimodal method to
outperform a unimodal method is well established in the literature
[86].

The experimental results verify this conclusion. Fig. 7 reveals that
all multimodal methods fusing facial expression and pupil diameter
have high accuracy, and TSTCCA performs the best. Fig. 8 also
demonstrates that multimodal fusion methods have better precision
than unimodal methods, and TSTCCA has the best performance.
Moreover, Table III, Table IV, and Table V list various evaluation
criteria to prove that TSTCCA is superior to other methods. TSTCCA

TABLE IV: Evaluation criteria (accuracy, sensitivity, specificity, and
F1-score) of unimodal facial expression and pupil diameter, as well
as multimodal CCA, TCCA, and TSTCCA using the kNN classifier
and indications of significant difference (*: p<0.05, **: p<0.01,
***: p<0.001).

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) F1-score

Facial expression 52.25*** 64.19* 41.97*** 0.56***

Std. 8.53 13.86 14.90 0.08

Pupil diameter 60.53*** 66.57** 55.73*** 0.62***

Std. 8.05 13.07 14.70 0.09

CCA 70.22*** 72.03* 69.67*** 0.70***

Std. 7.93 10.98 14.19 0.08

TCCA 69.53*** 58.84*** 81.11* 0.65***

Std. 6.76 13.65 12.87 0.09

TSTCCA 76.94 69.12 84.87 0.74
Std. 6.67 11.41 10.84 0.08

solves the problem of feature redundancy by selecting trials with
strong dependence between facial expression and pupil diameter.
TSTCCA makes full use of the complementary information of mul-
timodality and maximizes the cross-correlation between multimodal
features.

B. Opportunities for Paradigm Optimization Observed in the
Trial Subset

It has been proved that TSTCCA improves performance in depres-
sion recognition. Besides the classification results, we are concerned
about the distribution of stimulus types in depression predictions
based on a subset of selected trials for the purpose of paradigm
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TABLE V: Evaluation criteria (accuracy, sensitivity, specificity, and
F1-score) of unimodal facial expression and pupil diameter, as well
as multimodal CCA, TCCA, and TSTCCA using the RF classifier
and indications of significant difference (*: p<0.05, **: p<0.01,
***: p<0.001).

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) F1-score

Facial expression 55.16*** 56.11*** 55.44*** 0.54***

Std. 7.64 13.94 12.29 0.11

Pupil diameter 61.91*** 59.12*** 65.50*** 0.60***

Std. 8.09 15.50 14.88 0.11

CCA 71.50*** 70.50*** 73.41 0.70***

Std. 7.54 12.71 13.15 0.09

TCCA 67.34*** 59.09*** 76.60** 0.63***

Std. 6.65 13.83 14.50 0.09

TSTCCA 75.25 78.61 72.56 0.75
Std. 7.29 12.60 11.33 0.09

TABLE VI: The distributions of stimulus types in the trial subsets
selected by the four strategies. The table records the number of
positive, neutral, and negative trials in the optimal trial subset and
their percentages of the total number of positive, neutral, and negative
trials, respectively. k indicates the number of selected trials.

strategy 1 strategy 2 strategy 3 strategy 4

k 25 25 25 35

Positive 8 (0.80) 7 (0.70) 8 (0.80) 10 (1.00)

Negative 5 (0.71) 6 (0.85) 5 (0.71) 7 (1.00)

Neutral 12 (0.60) 12 (0.60) 12 (0.60) 18 (0.90)

optimization. To improve the persuasiveness of the conclusion, we not
only analyze strategy 1 in TSTCCA, but also discuss the other three
strategies. Specifically, we discuss the significance of the accuracy
trend in Fig. 6 in conjunction with the identifiers of trials obtained
by four selection strategies. We will explore this question in terms
of the highest accuracies of different strategies and the trend of the
broken lines.

For strategies 1, 2, 3, and 4, the highest accuracy is 78.81%,
76.69%, 76.22%, and 76.09%. Notably, although the trial subsets
selected by the four strategies are different, they share 18 topics.
The identifiers of these 18 trials are 10, 8, 27, 40, 37, 16, 29, 3,
13, 22, 28, 25, 18, 17, 21, 12, and 23. It is reliable to design 25
trials and preferentially select these 18 trials for future paradigm
optimization work. The distribution of stimulus types in the optimal
trial subset obtained by four strategies is shown in Table VI. For
strategies 1 and 3, the percentage of positive trials is the largest,
followed by negative and neutral ones. In the case of strategy 2,
the percentage of negative trials is greater than this of positive and
neutral. In general, each optimal trial subset includes stimuli with
positive, neutral, and negative attributes, which suggests that all three
stimuli work in concert to more effectively discriminate between
depressed and comparison individuals. Both positive and negative
trials always have a greater probability of being selected in all optimal
trial subsets, because the attentional biases of depressed patients differ
from normal controls when facing both negative and positive stimuli.

By diving into the points in Fig. 6, we observe that several frequent
identifiers in the deleted trials, as shown in Table VII. There are three
crucial points of the line chart in Fig. 6, which are k = 35, k = 25, and
k = 15. On the whole, when k decreases from 37 to 35, the accuracy is
significantly improved, which is about 3% higher than TCCA. Then

TABLE VII: The frequent identifiers in the deleted trials obtained by
the four selection strategies when k decreases. None * indicates two
repetitions, * indicates three repetitions, ** indicates four repetitions.

The frequent identifiers in the deleted trials

k:37→35 5, 11*

k:35→30 14, 19, 31*, 33, 36

k:30→25 7*, 9, 34

k:25→20 3, 12*, 15, 19, 23

k:20→15 17, 18, 21*, 25*

k:15→10 1, 16, 17, 22, 26, 28**

k:10→5 3, 6, 16, 27, 32*

k:5→0 4, 8*, 10*, 27, 29, 37, 40

the accuracy goes down at k = 30. Afterward, the accuracy reaches
the peak at k=25. When k continues to decrease, the accuracy also
decreases. Until k=15, the accuracy will slowly back up. Among the
above processes, when k=35, 25, 10, the accuracy increases, thus
the deleted trials have few benefits on depression recognition. When
k=30, 20, 15, the accuracy decreases, so the deleted trials should be
retained as appropriate.

These results suggest that the 25 trials with more negative and
positive stimuli are crucial to support the diagnosis of depression,
which may simplify the paradigm by preferentially removing trials
in Table VII. Table VII shows the trial identifiers that are deleted by
multiple strategies when the value of k is reduced. For example, the
first row of the table shows that two strategies delete the fifth trial
(identifier 5) and three strategies delete the eleventh trial (identifier
11) when k decreases from 37 to 35. However, it is hard to capture
humans’ complex psychological activities in a short experiment. But
anyway, this study captures the key information related to depression,
and the physiological and behavioral changes associated with these
25 trials should be paid extra attention.

VII. CONCLUSION

In the specific experiment of depression recognition, we propose
TSTCCA to utilize the correlation and complementary relationship
between facial expression and pupil diameter. Previous studies always
ignore the spatiotemporal correlation between facial expression and
pupil diameter, which might lead to high bias and high variance of
classification models. TSTCCA fuses the multimodal high relevant
features to optimize the feature space and improve the robustness of
classification. Moreover, we find that negative and positive trials are
associated with higher arousal for depressive facial behavioral phe-
notypes, which is in accordance with previous studies that depressed
patients had attentional avoidance of positive stimuli and difficulty
in attentional disengagement of negative stimuli. The preferred trial
subset offers the possibility of paradigm optimization and is expected
to support the clinical diagnosis of depression.

REFERENCES

[1] Damian F Santomauro, Ana M Mantilla Herrera, Jamileh Shadid,
Peng Zheng, Charlie Ashbaugh, David M Pigott, Cristiana Abbafati,
Christopher Adolph, Joanne O Amlag, Aleksandr Y Aravkin, et al.
Global prevalence and burden of depressive and anxiety disorders in
204 countries and territories in 2020 due to the covid-19 pandemic. The
Lancet, 398(10312):1700–1712, 2021.

[2] Ronald C Kessler, Patricia Berglund, Olga Demler, Robert Jin, Doreen
Koretz, Kathleen R Merikangas, A John Rush, Ellen E Walters, and
Philip S Wang. The epidemiology of major depressive disorder:
results from the national comorbidity survey replication (ncs-r). Jama,
289(23):3095–3105, 2003.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3322271

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lanzhou University. Downloaded on June 11,2024 at 02:25:01 UTC from IEEE Xplore.  Restrictions apply. 



11

[3] Zeinab Abd Elsalam Sarhan, Hanan Anwer El Shinnawy, Mo-
hamed Elsayed Eltawil, Yassmin Elnawawy, Wegdan Rashad, and Mo-
hammed Saadeldin Mohammed. Global functioning and suicide risk in
patients with depression and comorbid borderline personality disorder.
Neurology, Psychiatry and Brain Research, 31:37–42, 2019.

[4] J. C. Mundt, P. J. Snyder, M. S. Cannizzaro, K. Chappie, and D. S.
Geralts. Voice acoustic measures of depression severity and treatment
response collected via interactive voice response (ivr) technology. Jour-
nal of Neurolinguistics, 20(1):50–64, 2007.

[5] Junxin Chen, Shuang Sun, Li-bo Zhang, Benqiang Yang, and Wei
Wang. Compressed sensing framework for heart sound acquisition in
internet of medical things. IEEE Transactions on Industrial Informatics,
18(3):2000–2009, 2022.

[6] Gabrielle A Carlson and Frederick K Goodwin. The stages of mania:
A longitudinal analysis of the manic episode. Archives of general
psychiatry, 28(2):221–228, 1973.

[7] Andrew T Drysdale, Logan Grosenick, Jonathan Downar, Katharine
Dunlop, Farrokh Mansouri, Yue Meng, Robert N Fetcho, Benjamin
Zebley, Desmond J Oathes, Amit Etkin, et al. Resting-state connectivity
biomarkers define neurophysiological subtypes of depression. Nature
medicine, 23(1):28–38, 2017.

[8] Zhijun Dai, Heng Zhou, Qingfang Ba, Yang Zhou, Lifeng Wang, and
Guochen Li. Improving depression prediction using a novel feature
selection algorithm coupled with context-aware analysis. Journal of
Affective Disorders, 295:1040–1048, 2021.

[9] Aleks Stolicyn, J Douglas Steele, and Peggy Seriès. Prediction of
depression symptoms in individual subjects with face and eye movement
tracking. Psychological medicine, 52(9):1784–1792, 2022.

[10] Mariska E Kret and Annemie Ploeger. Emotion processing deficits: a
liability spectrum providing insight into comorbidity of mental disorders.
Neuroscience & Biobehavioral Reviews, 52:153–171, 2015.

[11] Alejandra Sel, Beatriz Calvo-Merino, Simone Tuettenberg, and Bettina
Forster. When you smile, the world smiles at you: Erp evidence for
self-expression effects on face processing. Social cognitive and affective
neuroscience, 10(10):1316–1322, 2015.

[12] Helen Davies, I Wolz, J Leppanen, F Fernandez-Aranda, U Schmidt, and
K Tchanturia. Facial expression to emotional stimuli in non-psychotic
disorders: A systematic review and meta-analysis. Neuroscience &
Biobehavioral Reviews, 64:252–271, 2016.

[13] Michel Pierre Janisse. Pupil size, affect, and exposure frequency. Social
Behavior & Personality: an international journal, 2(2), 1974.
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