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Wearable Eye-Tracking System for Synchronized
Multimodal Data Acquisition
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Abstract— Eye-tracking technology is extensively utilized in
affective computing research, enabling the investigation of
emotional responses through the analysis of eye movements.
Integration of eye-tracking with other modalities, allows for the
collection of multimodal data, leading to a more comprehensive
understanding of emotions and their relationship with physi-
ological responses. This paper presents a novel head-mounted
eye-tracking system for multimodal data acquisition with a
completely redesigned structure and improved performance.
We propose a novel method for pupil-fitting with high efficiency
and robustness based on deep learning and RANSAC, which
gets better performance of pupil segmentation when it is partially
occluded, and build a 3D model to obtain gaze points. Existing eye
trackers for multi-modal synchronous data collection either have
limited device support or suffer from significant synchronization
delays. Our proposed hard real-time synchronization mechanism
implements microsecond level latency with low cost, which facil-
itates multimodal analysis for affective computing research. The
uniquely designed exterior effectively reduces facial occlusion,
making it more comfortable for the wearer while facilitating the
capture of facial expressions.

Index Terms— Wearable eye tracker, eye movements, hard
real-time synchronization, affective computing.

I. INTRODUCTION

AS ONE of the most prominent features on the face, eye
movements are often subconsciously generated by people

and can reflect their attentional, cognitive, and emotional states
[1], [2], [3]. Nowadays, eye tracking has been widely applied
in psychology [4], [5], medicine [6], [7], neuroscience [8],
[9], computer science [10], [11], [12], affective computing and
other fields.
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Eye-tracking technology is extensively employed in affec-
tive computing to precisely gauge and scrutinize human
emotions [13], [14]. It offers a non-invasive and unbiased
method of measuring emotional states, as it does not neces-
sitate verbal or self-reported information from participants.
Advancements in hardware technology led to a shift in
the focus of eye-tracking technology towards developing
high-precision and high-stability systems, while researchers
propose various optimization algorithms related to eye-
tracking [15]. Hansen and Ji [16] conduct comprehensive
research on various eye models, eye detection techniques,
and gaze estimation models for video-based eye-tracking algo-
rithms. They also review the applications of these algorithms
and discussed factors such as eye models, corneal refraction,
and user glasses that could potentially result in errors in eye-
tracking. Swirski proposes a robust real-time pupil recognition
algorithm and 3D eye model fitting algorithm [17], which
can accurately identify images with large offset angles of the
pupil. The 3D eye model fitting algorithm does not require
user calibration, and the calculated gaze vector accuracy is
about two degrees [18]. Dan [19], [20] and Kar [21] propose a
polynomial fitting model suitable for two-dimensional scenes,
which uses the characteristics of the human eye based on
multivariate regression to derive the mapping relationship
between the center of the pupil and the true visual direc-
tion. They use different correction algorithms to improve the
accuracy and robustness of the algorithm. However, these
technologies are susceptible to head movement during testing,
requiring subjects to use headrests, chinrests, or bite bars
to keep their heads still. Moreover, these technologies only
apply to two-dimensional environments, and when the scenario
extends to three-dimensional space, the model’s performance
will decrease significantly. To address this issue, Mansourya
[22] propose a 3D gaze prediction algorithm based on 2D pupil
position, which directly maps the 3D gaze point prediction task
by mapping the 2D pupil location in the pupil camera image
to the 3D gaze direction in the scene camera. Huang et al. [23]
design a single-camera single-light source eye-tracking system
by constructing a binocular eye model to estimate gaze. By cal-
culating the 3D eye model’s gaze from the 2D pupil position,
the method can predict the 3D fixation point to some extent.
With the widespread applications of machine learning and
deep learning techniques, gaze-tracking algorithms undergo
developments in terms of accuracy and efficiency, effectively
driving the innovation of gaze-tracking technology. Wang [24]
proposes an improved DLSR-ANN method based on direct
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least squares regression for 2D gaze estimation. Cornia [25]
and Yuan [26] use the Attention network for Gaze Prediction.
Wu [27] proposes a Modulation-based Adaptive Network
(MANet), which is the first method utilizing high-level cues of
the eye-specific regions to modulate face features in the gaze
estimation task.

Head-mounted eye trackers, unlike desktop eye trackers,
provide greater freedom of head and body movement of
subjects, which makes them more suitable for affective com-
puting applications. Since the development of a portable
head-mounted eye tracker by Land and Lee in 1994 [28], many
companies commercialize eye-tracking devices, such as Tobii
Pro Glasses 3, Pupil Core, and Pupil Invisible [29], [30]. These
devices achieve remarkable accuracy, with gaze estimation
accuracy of less than one degree. There are a number of
papers that test these devices in a variety of ways [31], [32].
However, despite the availability of many commercial eye
trackers and accompanying software on the market, there are
still several issues that need to be addressed: External factors
such as lighting, occlusion by the eyelid or pupil, and blinking
can easily affect the eye-tracking algorithm and cause errors,
thereby impacting its robustness. The lack of synchroniza-
tion between eye movements and facial expressions during
data collection can cause misalignment of data, which could
potentially affect the accuracy of the results and make it
unsuitable for multimodal fusion research. Additionally, the
current eye-tracking devices may occlude facial landmarks and
result in the loss of facial data.

Based on the issues mentioned above, this article proposes
an eye-tracking system that includes wearable eye-tracking
hardware equipment, algorithms, software, and other com-
ponents. We redesign the structure of the eye tracker with
the goal of minimizing facial occlusion and optimizing the
multimodal synchronous acquisition process, which facilitates
the collection of high-quality multimodal data. The eye camera
can capture images at a high frame rate of 480 frames
per second (fps), providing more detailed information about
ocular movements, such as microsaccades. In addition, the
system features infrared light and filters to effectively reduce
environmental interference from ambient light. Moreover, the
use of a gyroscope enables the adjustment of gaze point,
reducing the influence of head movement on gaze point. The
system also ensures flexibility, portability, foldability, stability,
and user comfort for use in various scenarios. In summary, our
main contributions are listed as follows:

(1) We propose a pupil-fitting method with high efficiency
and robustness based on deep learning and Random Sample
Consensus (RANSAC) [33]. It utilizes deep learning and
clustering to filter out non-pupil edge points in the images
and performs pupil ellipse complementation on closed-eye
images. It also contains a pupil-fitting algorithm based on
the RANSAC algorithm with higher accuracy, speed, and
robustness. We design a long-short queue updating algorithm
to determine the center and radius of the eyeball, serving as
the foundation for constructing a three-dimensional model for
computing the optical axis vector.

(2) We propose a low-cost, hard real-time synchroniza-
tion solution based on PREEMPT_RT [34], [35], which
significantly reduces latency between processes and greatly

TABLE I
DESCRIPTION OF SOME NOTATIONS

benefits the synchronization of multimodal data collection.
Our proposed solution supports the Linux operating system,
reducing the overhead of software porting.

(3) We design three styles of wearable eye-tracking devices
tailored to different usage scenarios, substantially reducing
facial obstructions and facilitating the synchronized collection
of facial expressions and eye movement data.

II. UEYE EYE TRACKING SYSTEM

We summarize the key symbols used in this paper with a
notation table for better comprehension. We use bold lower-
case letters to denote vectors, and bold uppercase letters to
denote matrices.

Eye-tracking devices used today for multimodal data col-
lection generally suffer from two problems: limited device
support and significant synchronization delays. Head-mounted
eye trackers, unlike desktop eye trackers, provide greater
freedom of head and body movement of subjects, which
makes them more suitable for affective computing applica-
tions. However, they often result in greater obstruction of
critical facial areas, which hinders the synchronization of
facial expressions and eye movements. We present a novel
eye-tracking system with a completely redesigned structure
and improved performance parameters.

We design a unique eye tracker appearance that effectively
reduces facial obstruction, which makes it possible to collect
facial data and eye movement data at the same time. By using
a hard Real-Time Operating System (RTOS), we achieve
synchronized collection of multimodal data, improving the
quality and reliability of data collection. In addition, with the
addition of infrared lights and filters, we decrease the impact
of environmental lighting on data while ensuring the safety
and health of subjects. A high frame rate camera enables the
collection of more detailed data, including microsaccades and
saccades, while the inclusion of a gyroscope module allows
for gaze point adjustment, minimizing the impact of head
movements on the gaze point.

We use deep learning and clustering to screen the pupil edge
points in the image and develop special processing methods
to handle half-closed eye scenarios, improving the accuracy
and speed of pupil-fitting by refining the RANSAC algorithm.
Furthermore, our gaze tracking algorithm demonstrates supe-
rior performance in terms of faster execution speed, enhanced
robustness, and uncompromised accuracy.
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Fig. 1. Appearance of proposed three eye trackers.

We develop three types of eye trackers, i.e., UEYE Earhook,
UEYE Glasses, and UEYE Headset, Fig. 1 illustrates their
wearing styles respectively. In this article, we will focus on
the UEYE Headset to present our work.

A. Appearance Design
While high-performance head-mounted eye trackers are

available, they often obstruct the important facial landmarks of
subjects, which hinders the multimodal study involving facial
behavior. In this article, we design three novelty wearable
eye trackers with different mounting structures to minimize
the obstruction of the subject’s face, which are shown in
Fig. 2. This approach also improves the comfortability and
makes it easier to conduct multimodal studies involving facial
expressions and eye movements.

The UEYE Headset resembles a headset and is equipped
with three cameras: one scene camera which captures the
world, and two eye cameras. Apart from the eye cameras, the
eye tracker does not have any other structure that obstructs
the face. Moreover, the size of the eye cameras is small, with
a width of 0.5cm and a length of 1.2cm, which preserves
facial information to the greatest extent possible. This design is
suitable for collecting multimodal data of eye movements and
facial expressions, as well as ensuring the subject’s comfort.

For eye-tracking experiments, it is important that the
eye-tracking device has a stable structure and does not slide
during the experiment. The outer ring of the device serves as
the overall framework, ensuring the stability of the structure
and fixing the cameras and gyroscopes. The elastic strap is
retractable to accommodate subjects with different head sizes
and automatically tightens after being worn. Additionally,
there are semi-circular brackets on both sides that match the
shape of the ears, which fixes the device to the ears to prevent
slipping during experiments.

Considering the potential requirement for prolonged wear-
ing during experimental sessions, it is crucial for the eye
tracker to be lightweight and comfortable for the subjects.
Therefore, we choose nylon material with high precision and
elasticity in the design to reduce the weight of the device and
prevent excessive pressure on the subject.

The eye tracker also features multiple flexible joints, allow-
ing for a wide range of camera rotation to precisely record
eye movement data for different subjects and experimental

Fig. 2. Structure diagram of UEYE Headset. 1) Eye camera, 2) Scene camera,
3) Semi-circular bracket, 4) Gyroscope, 5) Elastic strap.

scenarios. The eye cameras have a horizontal adjustment
range of ±30◦ and a vertical adjustment range of ±45◦. The
extension arm of the eye camera is extendable and rotatable
to accommodate various head shapes and foldable for easy
storage, avoiding damage to the eye camera and its structure.
The scene camera’s horizontal adjustment range is ±27◦,
and the vertical adjustment range is ±53.5◦. It has been
verified that the above adjustment ranges are competent in
most scenarios through multiple experiments.

B. Hardware Design
1) Hardware Layout: The proposed eye tracker adopts a

USB slave scheme, it equips one scene camera and two eye
cameras which are responsible for the synchronized capturing
of ocular images and encoding. Our proposed eye tracker
features infrared light and a gyroscope sensor. The infrared
light helps to reduce environmental interference from ambient
light, while the gyroscope enables the adjustment of gaze
point, reducing the influence of head movement on gaze point.
All devices are connected to the host via USB protocol and
powered and transmit information through USB. The hardware
structure diagram is shown in Fig. 3.

Our eye-tracking device is designed with the following hard-
ware specifications: an eye camera with 480 fps, a resolution
of 320 × 240 pixels, and a field of view of 55◦ vertically
and 70◦ horizontally; a scene camera with a frame rate of
30 fps, a resolution of 1920 × 1080 pixels, and a field of
view of 52◦ vertically and 68◦ horizontally. Additionally, the
device features an 850nm near-infrared light source and a
corresponding 850nm filter.

2) Elimination of Ambient Light Interference: Infrared light
sources play a very important role in the eye tracker. In addi-
tion to serving as supplementary lighting for the eye camera
and mitigating the impact of ambient light sources, infrared
light sources play a crucial role in producing a dark pupil,
facilitating the identification of corneal reflections. This can
be used for algorithmic research through the pupillary corneal
reflection method. We have strict restrictions on the wave-
length and power of infrared light sources to ensure the health
and safety of subjects. The eye tracker developed in this
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Fig. 3. Hardware structure diagram.

Fig. 4. Algorithm flowchart.

paper has two infrared light sources with a wavelength of
850nm installed on both sides of the eye camera. We also add
a corresponding 850nm wavelength optical filter to achieve
better results.

3) The Gyroscope Module: As we all know, head movement
may affect the accuracy of gaze point estimation. We integrate
an MPU6050 gyroscope chip that integrates a 3-axis gyroscope
and a 3-axis accelerometer in the eye tracker. This allows us to
measure the head movements of subjects during experiments
and adjust the gaze point to reduce the influence of head
movement.

C. Pupil Recognition Algorithm
During the pupil recognition process, we exclusively focus

on the image of the pupil region, so we use the YOLO network
to segment the region of pupils. Additionally, we improve
the accuracy and fitting speed by introducing a filtering
mechanism for edge point sets and implementing completion
of pupil edge points in the presence of occlusion, based on
the RANSAC [33]. The flowchart of the algorithm is shown
in Fig. 4.

1) Deep Learning-Based Iris Region Segmentation: The
pupil extraction algorithm proposed in this paper mainly relies
on the edge point set and the pupil-fitting algorithm, which
require the extraction of edge information from the eye image.
However, there are many edge points in the eye image that do
not belong to the pupil edge, such as eyelashes and corners of
the eyes. Therefore, it is necessary to segment the pupil area
to avoid their impact on the fitting speed and robustness of
the algorithm.

The frame rate of the eye camera can reach up to 480 fps,
which means that the image exposure time is short. Besides,
due to the harmful effects of infrared light on the human eye,
the illumination intensity is restricted in a safety range. These

factors lead to darker images captured by the eye camera.
The low contrast of the image can greatly affect the results
of subsequent edge recognition algorithms. Before iris seg-
mentation, we enhance the image with histogram equalization
[36] to improve the accuracy and robustness of the subsequent
algorithm.

We employ a deep neural network based on Yolov5s [37]
for iris segmentation. It has the smallest depth and feature
map width among the Yolov5 series networks, making it
the fastest to train and detect, but with the lowest average
precision (AP) for a single-class model. Considering that the
pupil segmentation scene in this article is single and the
segmented area is relatively large, it is acceptable to sacrifice
some recognition accuracy to improve model efficiency. Then
we use Labelimg to manually annotate 3000 images for the
model’s training set.

2) Pupil Edge Point Extraction and Filtering: The edge
information of an object is mainly concentrated in the high-
frequency band, i.e., pixels with significant gradient changes in
the surrounding pixel values. Based on this property, the basic
idea of edge extraction is to calculate the gradient changes of
the gray values in the image, typically using Sobel operators
to calculate the horizontal and vertical gradient changes in the
image.

After performing the aforementioned calculations, gradient
information for each pixel point can be obtained. Subse-
quently, the entire image is scanned to determine whether the
gradient intensity of a pixel point is the maximum among the
pixels with the same direction in its vicinity. If the gradient
intensity of the point is the highest, it is considered a candidate
edge point. To determine whether the point is an edge point,
two thresholds, i.e., Lower Bound and U pper Bound, need
to be set for screening. If the gray gradient G of the image
is greater than U pper Bound, the pixel point is determined
to be an edge point. When G is less than Lower Bound, the
pixel point is not an edge point. For pixels between the two
thresholds, being connected to pixels that have already been
identified as true edge points in the neighborhood is used as a
criterion for further determination. If they are connected, then
the pixel point is also regarded as an edge point.

The edge points obtained in this way contain both pupillary
and non-pupillary edge points, so it is necessary to distinguish
them. It is known that the edge of the pupil in the image is
a continuous closed ellipse. Therefore, considering the edge
points of the image as a sample set, clustering is performed
based on the closeness of the sample distribution, and tightly
connected samples are partitioned into one class.

Distance(p, q) =

√
(x p − xq)2 + (yp − yq)2 (1)

q ∈ Clusteri ⇐ Distance(p, q)

≤ threshold ∩ p ∈ Clusteri (2)

Here, Distance(p, q) represents the Euclidean distance
between two points p and q. When it is less than the threshold,
they are considered to belong to the same Clusteri category.

Now we have obtained a set of pupil edge points and
multiple sets of non-pupil edge points. The non-pupil edge
point set is more discrete. We implement an adaptive filtering
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Algorithm 1 Pupil Edge Point Filtering Algorithm
Require: Set of edge points edge_points, Threshold distance

threshold, Threshold ratio rate, Maximum number of
iterations max_i terations

1: Initialize i terations as 0, Initialize set line_points as an
empty set

2: while i terations < max_i terations do
3: Calculate the intersect point (ρi , θi ) for points in

edge_points
4: Fit a line y = ax + b using the point (ρi , θi )

5: for each point (x, y) in edge_points do
6: Calculate distance d to the line y = ax + b
7: if |d| ≤ threshold then
8: Add (x, y) to set line_points
9: end if

10: end for
11: if size(line_points) is not increasing or

size(line_points) > rate∗ size(edge_points)
then

12: if size(line_points) > 0 then
13: Remove points in line_points from edge_points

14: Reset i terations to 0
15: else
16: Break
17: end if
18: else
19: Increment i terations by 1
20: end if
21: end while

approach for excluding non-pupil edge points by utilizing
calculations involving the dispersion degree of the samples
and the ratio of samples within a set to the total samples.
The dispersion degree is represented by the coefficient of
dispersion and the Pearson coefficient.

d̄ =
1
N

N∑
i=1

√
(xi − x̄)2 + (yi − ȳ)2 (3)

CV =

∑N
i=1(

√
(xi − x̄)2 + (yi − ȳ)2 − d̄)2

√
N ∗ d̄

(4)

ρ =
cov(X, Y )

σxσy
=

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(5)

The pupil may be obstructed by the eyelids in situations
where a person blinks or has a semi-closed eye state, resulting
in eyelid edges being included in the extracted pupil edge.
We propose a non-pupil edge point filtering algorithm based
on line detection to optimize the algorithm. Our Algorithm 1
primarily utilizes the Hough transform to detect points that lie
on a straight line.

3) Elliptical Pupil-Fitting: The edge point filtering
algorithm mentioned above states that when the pupil is
covered by the eyelid, non-pupil edge points will be adaptively
removed. As a result, the pupil edge points form a non-closed

ellipse. So we provide a method to complete the missing pupil
edge points.

It is known that an ellipse has rotational invariance, meaning
that there exist two points, i.e., p1(x1, y1) and p2(x2, y2),
on the edge of the ellipse that is symmetric with respect to
the center point (x0, y0) of the ellipse.

(x0, y0) =

(
x1 + x2

2
,

y1 + y2

2

)
(6)

We can estimate the possible center of the ellipse using the
gray value of the image. Since the pupil appears black in the
image, a negation operation is performed resulting in black
having a grayscale value of 255 and white having a grayscale
value of 0. The grayscale values of each row and column are
then accumulated resulting in a higher accumulation in the
pupil region compared to other regions. By calculating the
local maximum value, the centroid of the pupil can be found,
which corresponds to the possible center of the ellipse. The
formulas are as follows:

arg max
w∈[0,W ]

f (w) = {w ∈ [0, W ] : f (w) =

H∑
i=1

I (w, i)} (7)

arg max
h∈[0,H ]

f (h) = {h ∈ [0, H ] : f (h) =

W∑
j=1

I ( j, h)} (8)

RANSAC is a general parameter estimation method pro-
posed by Fischler and Bolles [33]. It is used to solve the
problem of a large proportion of outliers in the input data.
Unlike traditional sampling techniques, RANSAC uses a min-
imal number of data points and expands it by using consistent
data points to continue fitting the model [38]. RANSAC is able
to effectively identify and handle outliers, thereby improving
the robustness and accuracy of the model.

An improved RANSAC ellipse fitting algorithm with adap-
tive edge point selection is proposed in this paper. The model
fitting speed is related to the initial point selection of the
algorithm in the original RANSAC algorithm, which leads to
some problems in model efficiency and stability. So we adapt
the selection of initial points to achieve adaptive selection
and improve the accuracy, efficiency, and robustness of the
algorithm. The algorithm process is as Algorithm 2.

error(Q, x, y) = α
Q(x, y)

|∇Q(x, y)|
(9)

inliers = {(x, y)|error(Q, x, y) < ε} (10)

Here the error weight α has two specificities. First, com-
pared with the real edge points, the completed edge points
have a lower value of α. Second, there is a lower tolerance
for edge points with large grayscale gradient changes means
a higher value of α, making the ellipse fitting more biased
towards the edge parts with large gradient changes.

By incorporating adaptive edge point selection, the
improved RANSAC ellipse fitting algorithm is able to better
handle varying pupil shapes and sizes in a more efficient and
accurate manner.
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Algorithm 2 Pupil Ellipse Fitting Algorithm
Require: The center of the ellipse O(x, y), Set of edge

points edge_points, Minimum number of interior points
threshold, Error threshold ε, Number of interior points
n, Maximum number of iterations max_i terations

1: Initialize i terations as 0, Initialize Q(x, y) as an elliptic
equation

2: With O as the origin divide edge_points into four parts
and randomly select one point from each part

3: Randomly select one point from real pupil edge points
4: Add the five selected points to input_data
5: Fit the ellipse Q(x, y) using input_data
6: while i terations < max_i terations do
7: Initialize set input_data as an empty set
8: for each edge point (x, y) in edge_points do
9: Calculate error e with Equation 9

10: if e < ε then
11: Add (x, y) to input_data
12: end if
13: end for
14: Re-fit ellipse Q(x .y) using updated input_data
15: Increment i terations by 1
16: Calculate the number of interior points n with

Equation 10
17: if n > threshold then
18: Break
19: end if
20: end while
21: return Q(x, y)

D. Three-Dimensional Eyeball and Gaze Tracking Model
Based on Perspective Projection

We use a gaze prediction model based on a
three-dimensional gaze vector that aims to improve the
accuracy of gaze prediction by constructing a three-
dimensional model of the two-dimensional pupil image
and calculating the 3D eyeball model based on perspective
projection. This algorithm includes three steps, i.e. estimation
of the optical axis vector, calculation of the 3D eyeball model,
and calibration.

1) Three-Dimensional Eyeball Model: The 3D eyeball
model used in this paper is based on the two-sphere model
initially proposed by Le Grand [39]. The two-sphere model
is a model that describes the shape of the eyeball, which
approximates the geometric shape of the eye and consists of
two spherical parts: the eyeball and the pupil sphere. Various
parameters of the eye, such as the center of the pupil, the center
of corneal curvature, the optical axis, and the visual axis, are
usually required in gaze estimation [40]. The pupil, located at
the center of the iris, appears black and allows external light
to enter [41]. The line connecting the fovea and the center
of corneal curvature is called the visual axis, and the vector
passing through the centers of the two spheres is defined as the
optical axis. The visual axis determines the direction of gaze,
and there is a certain angle between the visual axis and the
optical axis, which is defined as the kappa angle (kappa) and
has an angle value of about 5◦ [42]. In gaze estimation, the

horizontal and vertical components of kappa are fixed for each
individual, and the visual axis cannot be directly estimated.
Therefore, the visual axis and kappa angle of each individual
must be obtained through a calibration process to complete
the modeling of the 3D eyeball model.

In the two-sphere model, the optical axis can be explained
as the connecting line between the two centers of the spheres.
Given the fitted ellipse of the pupil in the 2D image,
to obtain the optical axis v3d = (vx , vy, vz), the projection
v2d = (v′

x , v
′
y) of the optical axis on the 2D plane needs

to be obtained first. The pupil image used as input data
has undergone lens distortion correction during acquisition;
therefore, the two-sphere model discussed in this paper only
considers orthogonal projection in the process of 2D to 3D
transformation.

R =
d

sin θ
(11)

θ = arccos
b
a

(12)

The 3D optical axis vector is projected onto the 2D image
by passing through both the center of the eyeball and the center
of the pupil in 2D. Its direction is the same as the short axis
of the fitted ellipse of the pupil. According to the rotational
invariance of a sphere, these two conditions remain true during
pupil movement, while the coordinates and radius of the
eyeball remain unchanged. Therefore, an iterative updating
algorithm based on a long and short queue is designed to
calculate the 2D center coordinates and radius of the eyeball,
as is shown in Algorithm 3.

The algorithm described above obtains the coordinates
(xe, ye) and radius R of the two-dimensional projection of the
eyeball on the sphere. Assuming that the center of the eyeball
is located on the xoy plane of the three-dimensional coordinate
system, we can determine the three-dimensional coordinate
equation of the eyeball: (x − xe)

2
+ (y − ye)

2
+ z2

= R2.
Therefore, we can define the three-dimensional coordinate

equation of the pupil sphere as (x − i)2
+(y − j)2

+(z −k)2
=

r2. Simultaneous the equations of the eyeball and the pupil
sphere: {

(x − xe)
2
+ (y − ye)

2
+ z2

= R2

(x − i)2
+ (y − j)2

+ (z − k)2
= r2 (13)

We solve the equations of the two spheres simultaneously
and then find the plane of intersection between the two
spheres. Once we have the plane of intersection, we can
substitute it into either sphere equation to obtain the projected
equation of the intersectant curve on the xoy plane.

This projected curve equation is the ellipse fitting equation
from previous calculations. And we know that the minor axis
of the ellipse passes through the projection of the pupil sphere
center on the xoy plane.

Based on the elliptic equation and the short axis equation,
we can obtain the center of the pupil sphere (x p, yp, z p). Then
we combine it with the previously calculated coordinate of
the eyeball center to obtain the optical axis of the two-sphere
model. At this point, the modeling of the eyeball two-sphere
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Algorithm 3 Stable Eye Radius Calculation Algorithm
Require: Video frames of the pupil, Initial eyeball center

O(x0, y0), Lengths of the long and short queues nl and
ns , Efficiency of iterative updates α

1: Initialize queues Ql and Qs
2: while Video frames are not processed completely do
3: if Length of Qs is ns then
4: Calculate the mean value of the elements in Qs as

the short-term eyeball radius R̄′ and add it to the long
queue Ql

5: Remove half of the elements in Qs that significantly
differ from R̄′

6: else
7: Calculate the equation of the short axis l: y = kx +b

with the pupil ellipse and find point O ′(x, y) on this
line

8: Let O O ′
⊥ l and take a point A on the line O O ′

that O A = αO O ′

9: Take point A as the new center point O of the eyeball.

10: Calculate the Euclidean distance d between O O ′

11: Calculate eyeball radius R′ using Equations 11
and 12:

12: Add R′ to the short queue Qs
13: end if
14: if Length of Ql is nl then
15: Calculate the mean value of the elements in Ql as

the long-term eyeball radius
16: When a new element is added to Ql , remove the

element with the largest difference from the average
value

17: end if
18: end while
19: return O(x0, y0), R

model is completed.

v3d = (x p − xe, yp − xe, z p) (14)

2) Gaze Point Prediction Model Based on Three-
Dimensional Gaze Vector: The model based on
three-dimensional gaze vectors involves modeling the
human eye and gaze target in three-dimensional space
coordinates, fixing the positional relationship between the
two eyes in space, and calculating the visual axis vector and
its intersection point in three-dimensional space.

However, achieving this requires a coordinate system trans-
formation. In this paper, three coordinate systems are defined:
the image coordinate system, the camera coordinate system,
and the world coordinate system. The image coordinate system
is a two-dimensional Cartesian coordinate system about the
image plane, represented in pixels as (u, v), while the cam-
era coordinate system describes the three-dimensional spatial
position of the image with respect to the camera, represented
by (xc, yc, zc). The world coordinate system, also known as
the measurement coordinate system, is a three-dimensional
Cartesian coordinate system that can be used as a reference to
describe the spatial position of a camera and an object being

Fig. 5. Camera coordinate system and image coordinate system.

measured. The coordinates are represented as (xw, yw, zw),
and the position of the world coordinate system can be freely
determined based on the actual situation. It is important to note
that the origin and rotation direction of the world coordinate
system differ from those of the camera coordinate system.
Since the above three-dimensional models are obtained in
the image coordinate system, the eye model needs to be
transformed twice to obtain a model in the world coordinate
system and estimate the gaze point in this coordinate system.
Fig. 5 illustrates the relationship between the camera coordi-
nate system and the image coordinate system.

According to the principle of the pinhole camera model,
light from an object passes through the aperture and forms an
inverted image on the camera’s image plane. As a result, the
origin of the camera coordinate system is located at the optical
center of the camera, with the x-axis and y-axis parallel to the
x-axis and y-axis of the image coordinate system, respectively.
The z-axis is perpendicular to the xoy plane and points
outward. Given these differences, the transformation between
the image coordinate system and the camera coordinate system
can be defined using perspective projection. This is shown in
Equation 15:

zc

u
v

1

 =


f

dx
0 u0

0 f
dx

v0

0 0 1


xc

yc
zc

 = K

xc
yc
zc

 (15)

Here, K represents the camera’s intrinsic matrix, where f is the
focal length and dx and dy represent the length in actual that
each pixel on the x and y axes corresponds to. u0 and v0 denote
the offsets of the image coordinate system relative to the center
of the camera coordinate system, ideally corresponding to half
of the image’s width and height under ideal conditions.

In addition, the transformation between the camera coordi-
nate system and the world coordinate system mainly involves
translation and rotation, which can be expressed by the fol-
lowing formula in Equation 16:xc

yc
zc

 = R

xw

yw

zw

 + T (16)

Here, T is the rotation matrix and T is the translation matrix
from the camera coordinate system to the world coordinate
system.
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Based on the previous discussions on the transformation
between the different coordinate systems, the transformation
between the world coordinate system and the image pixel
coordinate system can be expressed as shown in Equation 17:

zc

u
v

1

 = K
[
R3∗3 T3∗1

] 
xw

yw

zw

1

 = P3∗4


xw

yw

zw

1

 (17)

Then we can obtain the unit vector of the optical axis in the
world coordinate system. However, it is important to note that
the optical axis may not accurately reflect the subject’s gaze
direction. Therefore, it is necessary to model the position of the
binocular visual axis and determine the kappa angle through
calibration.

First, a simple visual axis and optical axis angle model
is defined where the unit vector of the optical axis is vo =

[0 0 1]
T , and the angle between the visual axis and the optical

axis is represented as κ = (α, β). Then, the left and right eye’s
visual axis vectors can be expressed as shown in Equation 18:

vgl =

 cos(β) sin(α)

sin(β)

− cos(β) cos(α)

 , vgr =

cos(β) sin(α)

sin(β)

cos(β) cos(α)

 (18)

Expressing the optical axis in terms of horizontal and
vertical angles, i.e.θ and ϕ, the above Equation 18 can be
extended to Equation 19:

vgl =

 cos(ϕ + β) sin(θ + α)

sin(ϕ + β)

− cos(ϕ + β) cos(θ + α)

 ,

vgr =

 cos(ϕ + β) sin(θ + α)

sin(ϕ + β)

cos(ϕ + β) cos(θ + α)

 (19)

Finally, we can compute the intersection point of the left
and right eye’s visual axis vectors in space to estimate the
subject’s current gaze point. The three-dimensional coordinate
of the gaze point is defined as g(o, κ) = (gx , gy, gz), where
o = (ox , oy, oz) represents the three-dimensional coordinate of
the eyeball. The gaze point g(o, κ) can be determined using
Equation 20:

g(o, κ) = ol + kl ·

 cos(ϕl + βl) sin(θl + αl)

sin(ϕl + βl)

− cos(ϕl + βl) cos(θl + αl)


= ør + kr ·

cos(ϕr + βr ) sin(θr + αr )

sin(ϕr + βr )

cos(ϕr + βr ) cos(θr + αr )

 (20)

In the above-mentioned model, we use corneal reflection
to constrain the three-dimensional gaze point model. The
hardware device used in this paper is a dual-camera dual-light
source, which produces a corneal reflection spot on the left
and right pupil images, respectively. The following constraint
equations, shown in Equations 21 and 22, are obtained through
the law of reflection. Here, ql ,qr represent the reflection spots
on the left and right corneal surfaces, respectively. Similarly,
ol ,or represent the coordinates of the centers of the left and
right eyes, respectively. ll ,lr represent the positions of the

infrared light sources in space, and c is the optical center of
the camera.

(ll − c) × (ql − c) • (ol − c) = 0 (21)
(lr − c) × (qr − c) • (or − c) = 0 (22)

However, because the kappa angles of different subjects are
different, calibration needs to be estimated in advance. In the
individual calibration process, subjects are required to focus
on N calibration points on the screen: g∗

i , i = 1, 2, . . . , N .
Then, the model parameters can be optimized by minimizing
the distance between the predicted gaze point and the actual
fixation point, as is shown in Equation 23:

κ∗
= arg min

κ

∑
i

∥∥gi − g(o∗

i , κ)
∥∥ (23)

Here, gi represents the actual coordinates of the calibration
point, and g(o∗

i , κ) represents the predicted gaze point coor-
dinates. A five-point calibration was used in the experiment
to optimize the model parameters, determine the kappa angle
for each subject, and build a 3D gaze-tracking model.

E. Hard Real-Time Synchronization Mechanism
The synchronous collection of multimodal data is the foun-

dation of multimodal fusion analysis. Therefore, we need
to ensure low latency between different modalities of data
as well as between paradigm and data to achieve synchro-
nization as much as possible. The precise control of timing
and synchronization for input and output signals is typically
achieved through computer software such as E-Prime [43].
However, these software have limited support for devices [44]
and always require specialized hardware devices and physical
connections, which is costly. General Purpose Operating Sys-
tem (GPOS) based process synchronization may be affected by
multiple factors including operating system architecture, pre-
emptive scheduling, multitasking processing, etc. These factors
may lead to huge latencies, resulting in reduced efficiency and
performance of synchronization operations.

In order to address the issues mentioned before, we pro-
pose a hard real-time synchronization mechanism based on
PREEMPT_RT RTOS, which effectively guarantees deter-
ministic synchronization latency for real-time tasks. The
PREEMPT_RT patch on the Linux kernel, developed by a
group of kernel developers [34], [35], optimizes mechanisms
such as process scheduling, interrupts, and signals. It can meet
hard real-time requirements and has been widely used [45],
[46]. The main advantage of PREEMPT_RT over other hard
RTOSs is that it is compatible with various Linux distributions
and can use the development and execution environments of
existing Linux distributions, reducing the amount of work
involved in developing and porting applications. By modifying
the Linux kernel and adding the PREEMPT_RT patch, we can
artificially put process switching in a controllable state. High-
priority tasks, by increasing the process priority, can preempt
low-priority tasks, allowing our four camera processes to
maintain a stable and synchronized state, which increases
predictability and reduces maximum latency differences. First,
load the main process to initialize related resources and start
child processes then increase their priorities respectively and
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Fig. 6. Synchronization mechanism diagram.

Fig. 7. Facial landmark annotation image.

wait for synchronization signals. When the main process sends
synchronization signals to each child process, data collection
begins. The collected data is stored in the Random Access
Memory File System (RAMFS) first to reduce latency and then
transferred to the disk file system after the data collection is
completed. Fig. 6 illustrates the mechanism we implemented
for synchronized data acquisition.

III. RESULTS AND ANALYSIS

We conducted experiments to analyze the performance
of the facial occlusion detection, pupil-fitting algorithm,
gaze point prediction model, and hard real-time synchro-
nization mechanism of the eye tracker that we designed.
The experimental platform uses a Linux operating system
with version Ubuntu18.04, and the hardware consists of an
i5-9400F CPU, 16G memory, and NVIDIA GeForce GTX
1660Ti. The tracking application on Ubuntu is available at
https://gitee.com/defeattroy/ueye-desk-linux.

A. Facial Occlusion Analysis

Reducing facial occlusion is an important purpose of the eye
tracker that we designed. Therefore, we conducted a facial key
point occlusion analysis on it.

We utilize dlib to annotate the 68 facial landmarks and
output the annotated image by OpenCV, as shown in Fig. 7.
It can be seen that our eye tracker does not cause any occlusion
on the facial landmarks, while both Pupil Core and Tobii
Glasses 3 cause significant interference in the eyebrow area.

B. Pupil-Fitting
We validate the performance of the proposed

pupil-fitting algorithm on four publicly available datasets:

CASIA-Iris-Thousand, CASIA-Iris-Lamp, CASIA-Iris-Syn
[47], and IIT-Delhi-Iris [48]. The algorithm is compared with
the traditional RANSAC algorithm and the deep learning
algorithm Depp-VOG [49], and their performance is tested
under extreme scenarios. We randomly select 500 images
from the database as the test set and manually label the
ellipse that fits the pupil’s edge as groundtruth using the
VGG Image Annotator.

The CASIA-Iris-V4 iris image dataset is a publicly avail-
able dataset released by the Chinese Academy of Sciences,
containing a total of 54,607 iris images. In this paper, three
subsets of this dataset are utilized:

CASIA-Iris-Syn comprises 10,000 synthetic iris images
belonging to 1,000 categories and introduces intra-class
variations such as deformation, blur, and rotation. CASIA-Iris-
Lamp records texture elastic deformations caused by changes
in pupil dilation and contraction under different lighting con-
ditions. Therefore, it is suitable for researching non-linear iris
normalization and robust iris feature representation. CASIA-
Iris-Thousand is the first publicly available iris dataset with a
thousand subjects, making it suitable for studying the unique-
ness of iris features and for developing new iris classification
and indexing methods.

The IIT-Delhi-Iris dataset originates from iris images of
students and faculty in New Delhi, India. A total of 1,120
images are currently available from 224 subjects, comprising
176 males and 48 females, with ages ranging from 14 to
55 years.

Apart from the aforementioned publicly available datasets,
this paper also uses an independently collected iris database.
It contains 200 videos from 200 subjects and was captured
using a wearable eye-tracking device developed in our labora-
tory, with a resolution of 320×200 pixels. These pupil videos
encompass natural eye movements and blinking, resulting in
images with pupil occlusions and blurriness due to eye motion.
This dataset serves to better validate algorithms’ performance
in extreme scenarios.

Fig. 8 visually displays the algorithm’s fitting results and
demonstrates that the fitted ellipse circumference effectively
covers the edge of the pupil and has high fitting accuracy
across the four public datasets.

Table II displays the fitting results of the three algorithms
on the four datasets. During the experiment, we find that
all three algorithms performed well in identifying pupils,
but significant errors occurred when pupils were occluded,
leading to a notable impact on the performance evaluation.
As a result, we conduct the error analysis only when correctly
identifying pupils. The proposed algorithm had slightly smaller
errors compared to the other two algorithms but without
statistical significance. From the perspective of real-time per-
formance, our pupil-fitting algorithm has a clear advantage
in efficiency, and the frame rate in real-time analysis can
be stabilized at above 80Hz. We first perform pupil region
extraction, significantly reducing the computational workload
for subsequent algorithms. Second, we make improvements
to the RANSAC algorithm, improving the advantages of
initial point selection and thereby enhancing the algorithm’s
efficiency.
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TABLE II
COMPARING THE PUPIL-FITTING RESULTS OF RELATED ALGORITHMS

Fig. 8. The display of pupil ellipse fitting results.

While the fitting results presented earlier are based on
identifying pupils, we also conduct an experiment to test the
algorithm’s performance under occlusion conditions. We man-
ually screen images with pupil occlusion from a pupil database
collected and established independently in our laboratory and
obtained a pupil occluded dataset containing 200 images. The
pupil regions are labeled manually, and effective recognition is
defined as having an IoU greater than 80% between predicted
values and true values. The experiment was repeated ten times,
and the recognition rates of RANSAC and DeepVOG are
23.8% and 56.3%, respectively. In contrast, the recognition
rate of our proposed algorithm reaches 83.8%. Fig. 9 displays
the fitting results of three algorithms. It is evident that our
proposed pupil-fitting algorithm in this paper has significantly
better robustness under occlusion conditions compared to the
first two algorithms.

C. Gaze Tracking System
Experiments are designed to evaluate the gaze-tracking

system proposed in this paper. The experimenters are divided
into examiners and subjects where the examiners operate the
eye-tracking device’s upper computer software to complete
the calibration and gaze point prediction, while the subjects
observe a test paradigm displayed on another screen.

Fig. 9. The fitting results of three algorithms.

1) Experiment: The experiment mainly consists of two
parts: model calibration and gaze point prediction. The subject
is required to sequentially fixate on the five circular points that
appear on the screen at a distance of 80 cm during calibration.

During gaze point prediction, the subject is required to
perform three sets of tests at distances of 60 cm, 80 cm, and
100 cm from the screen to compare the accuracy changes of
the gaze-tracking model at different depths. Five test points are
sequentially shown in the center, upper left, lower left, upper
right, and lower right corners of the screen to test the gaze-
tracking algorithm’s performance. During the experiment, the
subjects are not required to strictly control their head move-
ments and are allowed to move their heads naturally.

2) Model Performance Analysis: We mainly present the
performance of the gaze-tracking system at different depths in
terms of two indicators: precision and accuracy of predicted
point distribution. Gaze points are estimated at three different
depths of 60 cm, 80 cm, and 100 cm after calibration at a
distance of 80 cm from the screen.

To compare with the 3D model, we implement a
gaze point prediction model based on multiple regression.
Tables III and IV show the precision and accuracy under ten
parallel experiments at three different depths. It can be seen
that the multiple regression and the 3D model exhibit similar
accuracy and perform well in gaze prediction at the calibration
plane distance (80 cm). Averaging accuracy across differ-
ent depths, the average precision for multiple regression is
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TABLE III
PRECISION OF GAZE PREDICTION MODEL BASED

ON THREE-DIMENSIONAL GAZE VECTOR

TABLE IV
ACCURACY OF GAZE PREDICTION MODEL BASED

ON THREE-DIMENSIONAL GAZE VECTOR

approximately 1.156◦, while the 3D model’s average precision
is approximately 0.875◦. The method of multiple regression
performs better in terms of precision. However, the 3D gaze
prediction model shows decreasing precision as the distance
between the subject and the gaze point increases. The predicted
gaze point set is also more scattered, leading to poorer
accuracy.

3) Error Analysis: As the distance between the human eyes
and the fixation point increases, the accuracy of the fixation
point prediction model based on the three-dimensional gaze
vector decreases. The gaze point prediction can be expressed
by Equation 24, which is determined by the eyeball coordi-
nates o and the κ angle. The visual axis vector is obtained
from the three-dimensional eyeball model generated by the
pupil region in the image and the kappa angle is obtained
from calibration. However, the process has errors, which cause
angle errors (θ, γ ) propagated to the visual vector, leading to
a dispersed distribution of predicted gaze points. When the

Fig. 10. A gaze prediction model based on eye-tracking data is used to
predict the distribution of fixation points in different depth scenes.

TABLE V
COMPARISON OF GAZE TRACKING ALGORITHMS

distance between the eye and the gaze target increases, the
error is magnified accordingly. Solving this problem will be
the focus of our future research.

gp(o, κ) = o + k ·

 cos(ϕ + β + θ) sin(θ + α + γ )

sin(ϕ + β + θ)

− cos(ϕ + β + θ) cos(θ + α + γ )


(24)

The formula for the error angle is given as Equation 25.
Taking the derivative of 1θ with respect to 1d yields
Equation 26 and Equation 27. Here, m is much smaller than
a and b, and aince a and b are determined, the value of
m approaches 1, meaning that f ′(1θ) approaches infinity.
Therefore, if there is a small increase in 1d, the value of 1θ

will increase greatly, causing the prediction distribution of the
gaze point to become dispersed as the gaze depth increases,
resulting in instability of the model.

1θ = arccos
a2

+ b2
− 1d2

2ab
(25)

f ′(1θ) =
1d

ab
√

1 − m2
(26)

m =
a2

+ b2
− 1d2

2ab
(27)

In summary, the error in accuracy is mainly caused by
imprecision in estimating the visual axis vector, which leads
to dispersed predicted gaze point distributions due to error
propagation in earlier algorithms, thus affecting the accuracy
of gaze estimation. If we can solve the errors caused by
algorithm jitter and improve the accuracy of predicting gaze
points at long distances, the gaze point prediction model
will have even better results. Table V shows the comparison
between our system and others.
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TABLE VI
ABLATION EXPERIMENTS

Fig. 11. Synchronization latency benchmark on idle system.

Fig. 12. Synchronization latency benchmark on CPU overload system.

D. Synchronous Performance Benchmark

In order to verify the feasibility of process synchronization
under this system, we conduct three sets of experiments using
an eye-tracking system on a general purpose Linux operating
system and PREEMPT_RT. We benchmark the maximum
process latency between the real-time tasks under idle, high
CPU load, and high memory load systems. A deterministic
real-time system always exhibits a normal distribution of
latency in linear scale, while there are occasional instances of
huge latencies in GPOS, so we use linear scale and logarithmic
scale to show the latency distribution for RTOS and GPOS
respectively.

The Linux stress testing tool “Stress” is used to increase
the system load, which applies a load on the computer’s CPU,
memory, IO, and disk to test system performance. The first
set of experiments is conducted under no system load as a
comparison experiment, with results shown in Fig. 11. In the
second set of experiments, we increase CPU load by running
60 processes in the background to constantly preempt the
processor, resulting in the data shown in Fig. 12. In the third
set of experiments, we increase the memory load and test
the system under heavy memory usage, with results shown
in Fig. 13. Each experiment is conducted 10,000 times while
calculating the maximum process latency difference between
the four camera processes.

Under an idle system, the maximum delay between a GPOS
process and a hard RTOS process is within 0.2ms. The results

Fig. 13. Synchronization latency benchmark on memory overload system.

of latencies show a normal distribution, which is consistent
with actual scenarios. However, under high CPU load condi-
tions, the delay of GPOS processes is significantly larger, with
a maximum of up to 120ms which leads to serious frame loss
and misalignment. Under a hard RTOS, the maximum delay
of processes remains within 0.2ms, which is the same as under
idle conditions and follows a normal distribution. Under high
memory load conditions, the delay of GPOS is still significant,
with a maximum of up to 50 milliseconds. However, with a
hard RTOS, the maximum delay of processes remains within
1.2ms and follows a normal distribution, which is also within
an acceptable range.

After three sets of experiments and 60,000 tests of the
maximum delay of processes, we find that modifying the
Linux kernel to a hard RTOS and increasing its priority
can ensure that the system remains stable under high load
conditions. That guarantees accurate synchronization of eye
movement, facial expression data, and scene images, and
collection of high-quality multimodal data. With a hard RTOS,
the maximum delay difference of four cameras is guaranteed
to be within 1 millisecond, which meets the acceptable error
range of the eye-tracking system designed in this paper.

In order to demonstrate the roles of the various modules
in our proposed hard real-time synchronization mechanism,
we conduct ablation experiments, and the results are shown in
Table VI. When RAMFS is not used and data is stored directly
on the hard drive, the frame rate is significantly reduced,
falling far below the expected design frame rate. At the
same time, the average latency exceeds 200ms. Conducting
ablation experiments without storing data in RAMFS would
be meaningless. Therefore, the ablation experiments store data
in RAMFS.

From the table, it can be observed that under GPOS,
due to differences in system scheduling, increasing process
priorities and using synchronization signals can sometimes
lead to an increase in latency discrepancies. However,
under RTOS, adjusting process priorities and introducing
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synchronization signals have a noticeable effect in reducing
latency discrepancies.

IV. CONCLUSION

This paper presents the design of a wearable eye-tracking
system capable of synchronously collecting multimodal data.
We carry out several key tasks to achieve this goal. First,
we design a wearable eye tracker that is flexible, portable,
stable, and comfortable, and minimizes facial occlusion as
much as possible, making it suitable for multimodal data
collection in a variety of scenarios. Second, we add infrared
light sources and filters to eliminate the effects of ambient
light on data collection and provide an optimal data collection
environment. Third, we propose a pupil extraction algorithm
based on RANSAC, which first segmented the iris region and
then fitted an elliptical pupil region using edge points. Then,
we use a gaze prediction model based on a three-dimensional
annotation vector. The intersection point between the left and
right eye visual axis vectors in space is calculated as the
current gaze point. Finally, we design a hard real-time syn-
chronization scheme to facilitate the synchronous collection
of multimodal data, which ensures data synchronization even
under a high load.

The experimental results demonstrate the effectiveness of
our proposed eye-tracking system. In addition, the eye tracker
we designed is compatible with Pupil Labs software [61],
providing excellent expandability for the system. Overall, our
work provides a robust wearable eye-tracking system that can
synchronously collect multimodal data.
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[17] L. Świrski, A. Bulling, and N. Dodgson, “Robust real-time pupil tracking
in highly off-axis images,” in Proc. Symp. Eye Tracking Res. Appl.,
Mar. 2012, pp. 173–176.

[18] L. Swirski and N. Dodgson, “A fully-automatic, temporal approach to
single camera, glint-free 3D eye model fitting,” in Proc. PETMEI, 2013,
p. 111.

[19] D. Su, Y. F. Li, and H. Chen, “Region-wise polynomial regression for
3D mobile gaze estimation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Nov. 2019, pp. 907–913.

[20] D. Su, Y.-F. Li, and H. Chen, “Cross-validated locally polynomial
modeling for 2-D/3-D gaze tracking with head-worn devices,” IEEE
Trans. Ind. Informat., vol. 16, no. 1, pp. 510–521, Jan. 2020.

[21] A. Kar and P. Corcoran, “A review and analysis of eye-gaze estimation
systems, algorithms and performance evaluation methods in consumer
platforms,” IEEE Access, vol. 5, pp. 16495–16519, 2017.

[22] M. Mansouryar, J. Steil, Y. Sugano, and A. Bulling, “3D gaze estimation
from 2D pupil positions on monocular head-mounted eye trackers,” in
Proc. 9th Biennial ACM Symp. Eye Tracking Res. Appl., Mar. 2016,
pp. 197–200.

[23] C.-W. Huang and W.-C. Tan, “An approach of head movement com-
pensation when using a head mounted eye tracker,” in Proc. IEEE Int.
Conf. Consum. Electron.-Taiwan (ICCE-TW), May 2016, pp. 1–2.

[24] J. Wang, G. Zhang, and J. Shi, “2D gaze estimation based on pupil-
glint vector using an artificial neural network,” Appl. Sci., vol. 6, no. 6,
p. 174, Jun. 2016.

[25] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human
eye fixations via an LSTM-based saliency attentive model,” IEEE Trans.
Image Process., vol. 27, no. 10, pp. 5142–5154, Oct. 2018.

[26] M. Yuan and D. Xu, “Spatio-temporal feature pyramid interactive
attention network for egocentric gaze prediction,” IEEE Trans. Circuits
Syst. Video Technol., vol. 33, no. 10, pp. 5790–5801, Oct. 2023.

[27] Y. Wu, G. Li, Z. Liu, M. Huang, and Y. Wang, “Gaze estimation via
modulation-based adaptive network with auxiliary self-learning,” IEEE
Trans. Circuits Syst. Video Technol., vol. 32, no. 8, pp. 5510–5520,
Aug. 2022.

[28] M. F. Land and D. N. Lee, “Where we look when we steer,” Nature,
vol. 369, no. 6483, pp. 742–744, Jun. 1994.

[29] K. Dierkes, M. Kassner, and A. Bulling, “A fast approach to refraction-
aware eye-model fitting and gaze prediction,” in Proc. 11th ACM Symp.
Eye Tracking Res. Appl., Jun. 2019, p. 19.

[30] B. Petersch and K. Dierkes, “Gaze-angle dependency of pupil-size
measurements in head-mounted eye tracking,” Behav. Res. Methods,
vol. 54, no. 2, pp. 763–779, Apr. 2022.

[31] I. T. C. Hooge, D. C. Niehorster, R. S. Hessels, J. S. Benjamins, and
M. Nyström, “How robust are wearable eye trackers to slow and fast
head and body movements?” Behav. Res. Methods, p. 115, Nov. 2022,
doi: 10.3758/s13428-022-02010-3.

[32] V. Delvigne, H. Wannous, T. Dutoit, L. Ris, and J.-P. Vandeborre,
“Evaluating the Tobii Pro Glasses 2 and 3 in static and dynamic
conditions,” Behav. Res. Methods, Aug. 2023. [Online]. Available:
https://doi.org/10.3758/s13428-023-02173-7

[33] M. A. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[34] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time Linux
kernel: A survey on preempt_rt,” ACM Comput. Surv., vol. 52, no. 1,
p. 136, 2019.

[35] Y.-C. Wang and K.-J. Lin, “Enhancing the real-time capability of
the Linux kernel,” in Proc. 5th Int. Conf. Real-Time Comput. Syst.
Appl., 1998, pp. 11–20.

Authorized licensed use limited to: Lanzhou University. Downloaded on June 11,2024 at 02:32:00 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.3758/s13428-022-02010-3


YANG et al.: WEARABLE EYE-TRACKING SYSTEM FOR SYNCHRONIZED MULTIMODAL DATA ACQUISITION 5159

[36] Y. Qi et al., “A comprehensive overview of image enhancement tech-
niques,” Arch. Comput. Methods Eng., vol. 29, no. 1, pp. 583–607,
Jan. 2022.

[37] (2020). Ultralytics, YOLOv5, GitHub Repository. [Online]. Available:
https://github.com/ultralytics/yolov5/

[38] K. G. Derpanis, “Overview of the RANSAC algorithm,” Image
Rochester NY, vol. 4, no. 1, p. 23, 2010.

[39] Y. Le Grand, Light, Colour and Vision. New York, NY, USA: Dover,
1957.

[40] E. D. Guestrin and M. Eizenman, “General theory of remote gaze
estimation using the pupil center and corneal reflections,” IEEE Trans.
Biomed. Eng., vol. 53, no. 6, pp. 1124–1133, Jun. 2006.

[41] K. R. Senior et al., The Eye: The Physiology of Human Perception.
New York, NY, USA: The Rosen Publishing Group, 2010.

[42] Z. Zhu and Q. Ji, “Novel eye gaze tracking techniques under natural head
movement,” IEEE Trans. Biomed. Eng., vol. 54, no. 12, pp. 2246–2260,
Dec. 2007.

[43] W. Schneider, A. Eschman, and A. Zuccolotto, E-Prime Users Guide.
Pittsburgh, PA, USA: Psychology Software Tools, 2012.

[44] D. Bridges, A. Pitiot, M. R. MacAskill, and J. W. Peirce, “The timing
mega-study: Comparing a range of experiment generators, both lab-
based and online,” PeerJ, vol. 8, p. e9414, Jul. 2020.

[45] J. Vestin, A. Kassler, and J. Åkerberg, “FastReact: In-network control
and caching for industrial control networks using programmable data
planes,” in Proc. IEEE 23rd Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), vol. 1, Sep. 2018, pp. 219–226.

[46] G. K. Adam, N. Petrellis, and L. T. Doulos, “Performance assessment of
Linux kernels with PREEMPT_RT on ARM-based embedded devices,”
Electronics, vol. 10, no. 11, p. 1331, Jun. 2021.

[47] Chinese Academy of Sciences. CASIA.v4. Accessed: Jun. 15, 2023.
[Online]. Available: http://biometrics.idealtest.org/

[48] A. Kumar and A. Passi, “Comparison and combination of iris matchers
for reliable personal authentication,” Pattern Recognit., vol. 43, no. 3,
pp. 1016–1026, Mar. 2010.

[49] Y.-H. Yiu et al., “DeepVOG: Open-source pupil segmentation and gaze
estimation in neuroscience using deep learning,” J. Neurosci. Methods,
vol. 324, Aug. 2019, Art. no. 108307.

[50] X. L. C. Brolly and J. B. Mulligan, “Implicit calibration of a remote gaze
tracker,” in Proc. Conf. Comput. Vis. Pattern Recognit. Workshop, 2004,
p. 134.

[51] P. Blignaut, “Mapping the pupil-glint vector to gaze coordinates in a
simple video-based eye tracker,” J. Eye Movement Res., vol. 7, no. 1,
pp. 1–11, Mar. 2013.

[52] D. Beymer and M. Flickner, “Eye gaze tracking using an active stereo
head,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
vol. 2, Jun. 2003, p. II451.

[53] S.-W. Shih and J. Liu, “A novel approach to 3-D gaze tracking using
stereo cameras,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 34,
no. 1, pp. 234–245, Feb. 2004.

[54] S.-W. Shih, Y.-T. Wu, and J. Liu, “A calibration-free gaze tracking
technique,” in Proc. 15th Int. Conf. Pattern Recognit. (ICPR), 2000,
pp. 201–204.

[55] R. Newman, Y. Matsumoto, S. Rougeaux, and A. Zelinsky, “Real-
time stereo tracking for head pose and gaze estimation,” in Proc.
4th IEEE Int. Conf. Autom. Face Gesture Recognit., Mar. 2000,
pp. 122–128.

[56] Z. Zhang and Q. Cai, “Improving cross-ratio-based eye tracking tech-
niques by leveraging the binocular fixation constraint,” in Proc. Symp.
Eye Tracking Res. Appl., Mar. 2014, pp. 267–270.

[57] N. M. Arar, H. Gao, and J.-P. Thiran, “A regression-based user cali-
bration framework for real-time gaze estimation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 27, no. 12, pp. 2623–2638, Dec. 2017.

[58] K.-H. Tan, D. J. Kriegman, and N. Ahuja, “Appearance-based eye
gaze estimation,” in Proc. 6th IEEE Workshop Appl. Comput. Vis.
(WACV), Dec. 2002, pp. 191–195.

[59] C.-C. Lai, S.-W. Shih, and Y.-P. Hung, “Hybrid method for 3-D gaze
tracking using glint and contour features,” IEEE Trans. Circuits Syst.
Video Technol., vol. 25, no. 1, pp. 24–37, Jan. 2015.

[60] M. Reinders, “Eye tracking by template matching using an automatic
codebook generation scheme,” in Proc. 3rd Annu. Conf. ASCI, ASCI,
Delft, 1997, pp. 85–91.

[61] M. Kassner, W. Patera, and A. Bulling, “Pupil: An open source platform
for pervasive eye tracking and mobile gaze-based interaction,” in Proc.
ACM Int. Joint Conf. Pervas. Ubiquitous Comput., Adjunct Publication,
2014, pp. 1151–1160.

Minqiang Yang (Member, IEEE) received the Ph.D.
degree in computer science from Lanzhou Univer-
sity. He is currently an Associate Professor with
the Gansu Provincial Key Laboratory of Wear-
able Computing, School of Information Science
and Engineering, Lanzhou University. His current
research interests include affective computing, image
processing, machine learning, and automatic depres-
sion detection. He has published more than 20 papers
on IEEE magazines, IEEE journals, and leading
conferences.

Yujie Gao received the B.S. degree from the Beijing
Institute of Technology in 2021. He is currently
pursuing the M.S. degree with the Gansu Provincial
Key Laboratory of Wearable Computing, School of
Information Science and Engineering, Lanzhou Uni-
versity. His main research interests include affective
computing, image processing, and machine learning.

Longzhe Tang received the B.S. and M.S. degrees
from Lanzhou University, Lanzhou, China, in
2020 and 2023, respectively. His main research inter-
ests include affective computing, image processing,
and machine learning.

Jian Hou received the M.S. degree from Lanzhou
University, Lanzhou, China, in 2023. His main
research interests include affective computing, image
processing, and machine learning.

Bin Hu (Fellow, IEEE) received the Ph.D. degree
in computer science from the Institute of Computing
Technology, Chinese Academy of Science, in 1998.
He is currently a (Full) Professor and the Dean of the
School of Medical Technology, Beijing Institute of
Technology, China. He is also an Adjunct Professor
and the former Dean of the School of Informa-
tion Science and Engineering, Lanzhou University,
Lanzhou, China. He is a Chinese National Distin-
guished Expert, the Chief Scientist of 973 projects,
and the National Advanced Worker in 2020. He was

elected as a fellow of the Institution of Engineering and Technology (IET).
He is a member of the Steering Council of the ACM China Council and the
Vice-Chair of the China Committee of the International Society for Social
Neuroscience. He serves as the Editor-in-Chief for IEEE TRANSACTIONS
ON COMPUTATIONAL SOCIAL SYSTEMS. He is also the TC Co-Chair of
Computational Psychophysiology in the IEEE Systems, Man, and Cybernetics
Society (SMC) and the TC Co-Chair of Cognitive Computing in IEEE SMC.
He is a member of the Computer Science Teaching and Steering Committee
and the Science and Technology Committee. He (co)authored more than
400 publications (more than 10 000 citations, H-index 51). His awards include
the 2014 China Overseas Innovation Talent Award, the 2016 Chinese Min-
istry of Education Technology Invention Award, the 2018 Chinese National
Technology Invention Award, and the 2019 WIPO-CNIPA Award for Chinese
Outstanding Patented Invention. He is a Principal Investigator for large
grants, such as the National Transformative Technology Early Recognition and
Intervention Technology of Mental Disorders Based on Psychophysiological
Multimodal Information, which have extensively promoted the development
of objective, quantitative diagnosis, and non-drug interventions for mental
disorders.

Authorized licensed use limited to: Lanzhou University. Downloaded on June 11,2024 at 02:32:00 UTC from IEEE Xplore.  Restrictions apply. 


