Publications
1. Dataset description reference
Cai, H., Gao, Y., Sun, S., Li, N., Tian, F., Xiao, H., Li, J., Yang, Z., Li, X., Zhao, Q., Liu, Z., Yao, Z., Yang, M., Peng, H., Zhu, J., Zhang, X., Hu, X., & Hu, B. (2020). MODMA dataset: a Multi-modal Open Dataset for Mental-disorder Analysis. arXiv preprint arXiv:2002.09283
Download
2. Latest publications based on the individual dataset
2.1 EEG
2.1.1 Dataset : eeg_128channels_ERP_lanzhou_2015
2.1.2 Dataset : eeg_128channels_resting_lanzhou_2015
Sun, S., Li, J., Chen, H., Gong, T., Li, X., & Hu, B. (2020). A study of resting-state EEG biomarkers for depression recognition. arXiv preprint arXiv:2002.11039.
Download
2.1.3 Dataset : eeg_3channels_resting_lanzhou_2015
Shi, Q., Liu, A., Chen, R., Shen, J., Zhao, Q., & Hu, B. (2020). Depression Detection using Resting State Three-channel EEG Signal. arXiv preprint arXiv:2002.09175
Download
2.2 Audio
2.2.1 Dataset : audio_lanzhou_2015
Liu, Z., Wang D., Zhang L., & Hu, B. (2020) A Novel Decision Tree for Depression Recognition in Speech. arXiv preprint arXiv:2002.12759.
Download
3. Related references
3.1 EEG
3.1.1 Dataset : eeg_128channels_ERP_lanzhou_2015
Li, X., Li, J., Hu, B., Zhu, J., Zhang, X., Wei, L., ... & Zhang, L. (2018). Attentional bias in MDD: ERP components analysis and classification using a dot-probe task. Computer methods and programs in biomedicine, 164, 169-179.
Download
Hu, B., Rao, J., Li, X., Cao, T., Li, J., Majoe, D., & Gutknecht, J. (2017). Emotion regulating attentional control abnormalities in major depressive disorder: an event-related potential study. Scientific reports, 7(1), 1-21.
Download
3.1.2 Dataset : eeg_128channels_resting_lanzhou_2015
Sun, S., Li, X., Zhu, J., Wang, Y., La, R., Zhang, X., ... & Hu, B. (2019). Graph Theory Analysis of Functional Connectivity in Major Depression Disorder With High-Density Resting State EEG Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(3), 429-439.
Download
Peng, H., Xia, C., Wang, Z., Zhu, J., Zhang, X., Sun, S., ... & Li, X. (2019). Multivariate Pattern Analysis of EEG-Based Functional Connectivity: A Study on the Identification of Depression. IEEE Access, 7, 92630-92641.
Download
Li, X., Jing, Z., Hu, B., Zhu, J., Zhong, N., Li, M., ... & Majoe, D. (2017). A resting-state brain functional network study in MDD based on minimum spanning tree analysis and the hierarchical clustering. Complexity, 2017.
Download